Randomized methods for low-rank approximation of matrices and tensors

Yuji Nakatsukasa
Oxford University

Based on joint work with
Behnam Hashemi (Leicester), and Maike Meier (Oxford)
Computational Mathematics for Data Science, TUD, 2023

Algorithms in Numerical Linear Algebra (NLA)

For $A x=b, A x=\lambda(B) x, A=U \Sigma V^{T}$

1. Classical (dense) algorithms (LU, QR, Golub-Kahan)

- $(+)$ Incredibly reliable, backward stable
- (-) Cubic complexity $O\left(n^{3}\right)$

2. Iterative (e.g. Krylov) algorithms

- (+) Fast convergence for 'good' matrices: clustered eigenvalues or (GMRES) or well-conditioned (LSQR)
- (-) If not, need preconditioner

3. Randomized algorithms

- (+) Next slide(s)
- (-) Lack of reproducibility, might lose nice properties, e.g. structure

What can randomization do for you?

1. Sketch and solve/precondition

- least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós (10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]

2. Near-optimal solution with lightning speed

- e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]

3. Sample to approximate

- Monte Carlo style; often comes with error estimates
- e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]

4. Avoid pathological situations by perturbation/blocking

- e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos [Musco-Musco 15], [Tropp 18]

What can randomization do for you?

1. Sketch and solve/precondition

- least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós (10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]

2. Near-optimal solution with lightning speed Part I: low-rank SVD, Part III: low-rank tensor (Tucker)

- e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]

3. Sample to approximate (Part II: rank estimation)

- Monte Carlo style; often comes with error estimates
- e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]

4. Avoid pathological situations by perturbation/blocking

- e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos [Musco-Musco 15], [Tropp 18]

Sketching: Key idea in randomized linear algebra

Sketching for least-squares problems

For $A: n \times k, n \gg k$

With "reasonable/random" sketch $S \in \mathbb{C}^{s \times n}(s>k$, say $s=2 k)$,

$$
(1-\epsilon)\|A v-b\|_{2} \leq\|S(A v-b)\|_{2} \leq(1+\epsilon)\|A v-b\|_{2},
$$

for some ϵ (not small, e.g. $\epsilon=\frac{1}{2}$) "subspace embedding". Hence the sketched solution \hat{x} satisfies

$$
\|A \hat{x}-b\|_{2} \leq \frac{1+\epsilon}{1-\epsilon}\|A x-b\|_{2}
$$

- if $\|A x-b\|_{2}$ is small, \hat{x} is a great solution!
- $S A$ in $O(n k \log n)$ cost: SRFT, or $O(\operatorname{nnz}(A))$ with sparse sketch [Sarlos 06, Clarkson-Woodruff 17]
- For full accuracy do $S A=Q R$, solve min $\left\|A R^{-1} y-b\right\|_{2}$ via LSQR

Explaining why sketching works via M-P

Marchenko-Pastur: 'Rectangular random matrices are well-conditioned'

$$
\sigma_{i}(G) \text { for } G_{i j} \sim N(0,1) \text { supported in }[\sqrt{m}-\sqrt{n}, \sqrt{m}+\sqrt{n}]
$$

Claim: $\|A v-b\|_{2} \approx\|S(A v-b)\|_{2}$ for all $v(\approx:$ 'same up to $O(1)$ factor')

- Let $[A, b]=Q R . S[A, b]=(S Q) R$. Can write $\|A v-b\|_{2}=\|Q w\|_{2}$ and $\|S(A v-b)\|_{2}=\|(S Q) w\|_{2}$.
- Now $S Q$ is rectangular+random $\Rightarrow \sigma_{i}(S Q) \approx 1$ by M-P.
- Hence $\|(S Q) w\|_{2} \approx\|Q w\|_{2}$ for all w.

Related to J-L Lemma, RIP, oblivious subspace embedding etc

(Most) important result in Numerical Linear Algebra

Given $A \in \mathbb{R}^{m \times n}(m \geq n)$, find low-rank (rank r) approximation

- Optimal solution $A_{r}=U_{r} \Sigma_{r} V_{r}^{T}$ via truncated SVD
$U_{r}=U(:, 1: r), \Sigma_{r}=\Sigma(1: r, 1: r), V_{r}=V(:, 1: r)$, giving

$$
\left\|A-A_{r}\right\|=\left\|\operatorname{diag}\left(\sigma_{r+1}, \ldots, \sigma_{n}\right)\right\|
$$

in any unitarily invariant norm [von Neumann 37, Horn-Johnson 85]

- But that costs $O\left(m n^{2}\right)$; look for faster approximation
- Low-rank matrices everywhere

Part I: Randomized low-rank matrix approximation

[Halko-Martinsson-Tropp, SIREV 2011]

1. Form a random matrix $X \in \mathbb{R}^{n \times r}$.
2. Compute $A X$ and its QR factorization $A X=Q R$.
3. $A \approx Q \quad Q^{T} A \quad$ is low-rank approx.

- $O(m n r)$ cost for dense A, can be reduced to $O\left(m n \log n+m r^{2}\right)$ via FFT and interp. decomp. (slightly worse accuracy)
- $m r^{2}$ dominant if $r>\sqrt{n}$ or e.g. A sparse
- Near-optimal approximation guarantee: for any $\hat{r}<r$,

$$
\mathbb{E}\|A-\hat{A}\|_{F} \leq\left(1+\frac{r}{r-\hat{r}-1}\right)\left\|A-A_{\hat{r}}\right\|_{F}
$$

where $A_{\hat{r}}$ is the (optimal) rank \hat{r}-truncated SVD

Generalized Nyström

Generalized Nyström (GN) :

$$
\begin{aligned}
& A \approx A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A=A X \square Y^{T} A \\
& \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times(r+\ell)}, \ell=c r \text { (we choose } c=0.5 \text {) }
\end{aligned}
$$

- e.g. Gaussian $X_{i j} \sim N(0,1)$
- or SRFT $X=D F S, D:$ diag, F : FFT, S : subsampling (or hashing)
- Near-optimal cost, essentially $A X$ and $Y^{T} A$. Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström

Generalized Nyström

$$
\begin{aligned}
& A \approx A X\left(Y^{T} A X\right)_{\epsilon}^{\dagger} Y^{T} A=A X \square Y^{T} A \\
& \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times(r+\ell)}, \ell=c r \text { (we choose } c=0.5 \text {) }
\end{aligned}
$$

- e.g. Gaussian $X_{i j} \sim N(0,1)$
- or SRFT $X=D F S, D:$ diag, F : FFT, S : subsampling (or hashing)
- Near-optimal cost, essentially $A X$ and $Y^{T} A$. Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström
- Numerically stable with ϵ-pseudoinverse $\left(U \Sigma V^{T}\right)_{\epsilon}^{\dagger}=V \Sigma_{\epsilon}^{\dagger} U^{T}$

Generalized Nyström

$$
\begin{aligned}
& A \approx A X\left(Y^{T} A X\right)_{\epsilon}^{\dagger} Y^{T} A=A X \square Y^{\left(Y^{T} A X\right)_{\epsilon}^{\dagger}} Y^{T} A \\
& \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times(r+\ell)}, \ell=c r \text { (we choose } c=0.5 \text {) }
\end{aligned}
$$

- e.g. Gaussian $X_{i j} \sim N(0,1)$
- or SRFT $X=D F S, D:$ diag, F : FFT, S : subsampling (or hashing)
- Near-optimal cost, essentially $A X$ and $Y^{T} A$. Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström
- Numerically stable with ϵ-pseudoinverse $\left(U \Sigma V^{T}\right)_{\epsilon}^{\dagger}=V \Sigma_{\epsilon}^{\dagger} U^{T}$
- Key tool for convergence+stability analysis: Marchenko-Pastur

Quick proof of why Range $(A X)$ is good

So by M-P $\left\|\left(V_{1}^{T} X\right)^{\dagger}\right\|=O(1)$. Right-multiply $\left(V_{1}^{T} X\right)^{\dagger} V_{1}^{T}$ to get

$A X$	$\left(V_{1}^{T} X\right)^{\dagger}$	V_{1}^{T}	$+\tilde{E}=U_{1} \Sigma_{1} V_{1}^{T}+\tilde{E} \approx A$

Hence Range $(A) \subseteq \operatorname{Range}(A X)$

Approximants of form $A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A$

$$
\left(\text { or } A\left(A^{T} A\right)^{q} X\left(Y^{T} A\left(A^{T} A\right)^{q} X\right)^{\dagger} Y^{T} A\right)
$$

Ω : random matrix (e.g. Gaussian, SRFT)

	X, Y	q	stable?	cost for dense A
HMT 2011	$X=\Omega, Y=A X$	0	$\sqrt{ }$	$O(m n r)$
Nyström $(A \succ 0)$	$Y=X=\Omega$	0	(\times)	$O\left(m n \log n+m r^{2}\right)$
HMT+Nyström	$Y=X=Q, A \Omega=Q R$	1	(\times)	$O(m n r)$
Subspace iter	$X=\Omega, Y=\tilde{\Omega}$	>1	$(\sqrt{ })$	$O(m n r q)$
TYUC19	$(4$ sketch matrices $)$	0	$(\sqrt{ })$	$O\left(m n \log n+m r^{2}\right)$
TYUC17	$X=\Omega, Y=\tilde{\Omega}$	0	$(\sqrt{ })$	$O\left(m n \log n+m r^{2}\right)$
Clarkson-Woodruff09(C-W)	$X=\Omega, Y=\tilde{\Omega}$	0	(\times)	$O\left(m n \log n+r^{3}\right)$
Demmel-Grigori-Rusciano19	$\mathrm{C}-\mathrm{W}+$ extra term	0	(\times)	$O\left(m n \log n+m r^{2}\right)$
This work, GN	$X=\Omega, Y=\tilde{\Omega}$	0	$\sqrt{ }$	$O\left(m n \log n+r^{3}\right)$

(\times) : unstable examples exist (though often perform ok) $(\sqrt{ })$: conjectured to be stable (no proof)

- GN Combines stability and near-optimal complexity
- explicit constants available: GN $10 m n \log n+\frac{7}{3} r^{3}$ flops

Experiments: dense matrix

Dense 50000×50000 matrix w/ geom. decaying σ_{i}

HMT: Halko-Martinsson-Tropp 11, TYUC: Tropp-Yurtsever-Udell-Cevher 17

- GN and TYUC have same accuracy (as they should)
- GN faster, up to $\approx 10 \mathrm{x}$

Experiments: implementation of $\left(Y^{T} A X\right)^{\dagger}$ and stability

- pinv (direct computation of pseudoinverse) is unsurprisingly unstable
- backslash is better but not perfect
- QR-based $\hat{A}_{r}=\left((A X) R^{-1}\right)\left(Q^{T}\left(Y^{T} A\right)\right)$ (recommended)

Part I in a nutshell

```
n = 1000; % size
A = gallery('randsvd',n,1e100);
r = 200; % rank
X = randn(n,r); Y = randn(n,1.5*r);
AX = A*X;
YA = Y'*A;
YAX = YA*X;
    [Q,R] = qr(YAX,0); % stable implementation of pseudoinverse
At = (AX/R)*(Q'*YA);
norm(At-A,'fro')/norm(A,'fro')
ans = 2.8138e-15
```

For details, please see arXiv 2009.11392
"Fast and stable randomized low-rank matrix approximation"

Rank estimation main idea: random embedding preserves $O\left(\sigma_{i}\right)$

X, Y : Gaussian (or SRFT), scaled s.t. $\sigma_{i}\left(Q^{T} X\right), \sigma_{i}(Y Q) \in[1-\delta, 1+\delta]$. Key fact: $\frac{\sigma_{i}(A)}{\sigma_{i}\left(Y^{T} A X\right)}=O(1)$ for $i=1,2, \ldots, r$

The rank estimation algorithm

 compute approximate ϵ-rank.
1: Set $\tilde{r}_{1}=$ round $\left(1.1 r_{1}\right)$ to oversample by 10%.
2: Draw $n \times \tilde{r}_{1}$ random embedding matrix X.
3: Sketch: Compute the $m \times \tilde{r}_{1}$ matrix $A X$.
4: Set $r_{2}=1.5 \tilde{r}_{1}$, draw an $r_{2} \times m$ SRFT embedding matrix Y.
5: Form the $r_{2} \times \tilde{r}_{1}$ matrix $Y^{T} A X$.
6: Compute the first r_{1} singular values of $Y^{T} A X$.
7: Output smallest \hat{r} s.t. $\sigma_{\hat{r}+1}\left(Y^{T} A X\right) \leq \epsilon$.

- Complexity: $O\left(m n \log n+r^{3}\right)$
- When done within GN $A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A$, extra cost is marginal

Please see [Meier-N. arXiv 2020] for details

Part III: Tucker decomposition/approximation of tensors

$\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots n_{d}}$
Tucker decomposition:

$$
\mathcal{A}:=\mathcal{C} \times_{1} F_{1} \times_{2} F_{2} \cdots \times_{d} F_{d}
$$

- Factor matrix $F_{i} \in \mathbb{R}^{n_{i} \times \hat{r}_{i}},\left(\hat{r}_{1}, \ldots, \hat{r}_{d}\right) \leq\left(n_{1}, \ldots, n_{d}\right)$, often " \ll "
- Easy to force F_{i} orthonormal (not necessary)

Other tensor decompositions (not covered here): CP, tensor train

Unfoldings

If $\mathcal{C} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}, M \in \mathbb{R}^{m_{k} \times n_{k}}$, then

$$
\mathcal{B}=\mathcal{C} \times{ }_{k} M \in \mathbb{R}^{n_{1} \times \cdots n_{k-1} \times m_{k} \times n_{k+1} \times \cdots \times n_{d}}
$$

is the mode-k product of \mathcal{C} and M if $B_{(k)}=M C_{(k)}$.

Big-picture idea

Idea: if

then

Big-picture idea cont'd

This implies with $B=\operatorname{unfold}\left(\mathcal{B}^{\text {new }}\right)$

RTSMS:overview

Repeat: work on "unfold $\left(\mathcal{B}^{\text {new }}\right)_{(2)}$ "

Finally on "unfold $\left(\mathcal{B}^{\text {new }}\right)_{(3)}$ "

RTSMS:overview

Repeat: work on "unfold $\left(\mathcal{B}^{\text {new }}\right)_{(2)}$ "

Finally on "unfold $\left(\mathcal{B}^{\text {new }}\right)_{(3)}$ "

RTSMS:overview

Repost:

So high-level alg:

1. Unfold current core tensor to get (fat) matrix $A_{(1)}$
2. Find low-rank approximation $A_{(1)} \approx F_{1} B^{(2)}$

Low-rank approximation of unfolding

To find $A_{(1)} \approx F_{1} B^{(2)}$

One can use (alg may find F first or B first)

- SVD: STHOSVD [Vannieuwenhoven-Vandebril-Meerbergen 12]
- HMT: R-STHOSVD [Minster-Saibaba-Kilmer 20]
- GN: (roughly) RTSMS (this work)
- Other approaches: HOSVD on unfoldings of original tensor \mathcal{A} (more computation, perhaps more parallel) [Sun-Guo-Luo-Tropp-Udell (20) etc]

RTSMS (Randomized Tucker via Single-Mode-Sketch)

From GN: Taking Gaussian $\Omega \in \mathbb{R}^{r_{1} \times n_{1}}$,

Then find \hat{F}. In GN, Ω_{2} iid Gaussian, $A_{(1)} \approx A_{(1)} \Omega_{2}\left(\Omega A_{(1)} \Omega_{2}\right)^{\dagger} \Omega A_{(1)}$

Theorem

Let $\hat{\mathcal{A}}$ be the output of RTSMS with Gaussian sketches. Then
$\mathbb{E}\|\hat{\mathcal{A}}-\mathcal{A}\|_{F} \leq \sum_{j=1}^{d}\left(\prod_{i=1}^{j} \sqrt{1+\frac{\hat{r}_{i}}{\ell_{i}-1}} \sqrt{1+\frac{\hat{r}_{i}-\ell_{i}}{\hat{r}_{i}-\ell_{i}-r_{i}-1}}\right)\left\|\mathcal{A}-\mathcal{A}_{\text {opt }}\right\|_{F}$,
where $\mathcal{A}_{\text {opt }}$ is the best Tucker approx., $1<\ell_{i} \leq \hat{r}_{i}-r_{i}$.

RTSMS (Randomized Tucker via Single-Mode-Sketch)
From GN: Taking Gaussian $\Omega \in \mathbb{R}^{r_{1} \times n_{1}}$,

Then find \hat{F}. In GN, Ω_{2} iid Gaussian, $A_{(1)} \approx A_{(1)} \Omega_{2}\left(\Omega A_{(1)} \Omega_{2}\right)^{\dagger} \Omega A_{(1)}$ but then $\Omega_{2} \in \mathbb{R}^{\left(n_{2} n_{3} \cdots n_{d}\right) \times O\left(\hat{r}_{1}\right)}$, enormous (storage cost) Instead: in RTSMS we obtain \hat{F} via the least-squares problem

RTSMS: solving LS

- Massively overdetermined $\left(n_{2} \cdots n_{d}\right) \times \hat{r}_{1}$
- Many right-hand sides $\left(A_{(1)}^{T} \in \mathbb{R}^{\left(n_{2} \cdots n_{d}\right) \times n_{1}}\right)$
- $A_{(1)}^{T} \Omega_{1}^{T}$ is extremely ill-conditioned (by assumption/construction)

Which means

- Sketching is natural+attractive approach
- Important to avoid sketching cost for RHS, $S A_{(1)}^{T}$
- Stability issues: Natural approaches (sketch-to-solve, Blendenpik, even backslash) don't work

RTSMS: solving LS

As before, sketch for efficiency:

- To reduce sketching cost for $S A_{(1)}^{T}$, let $S \in \mathbb{R}^{s \times n_{2} n_{3}}$ be subsampling matrix (row-submatrix of $I_{n_{2} n_{3}}$), indices chosen via leverage scores of $A_{(1)}^{T} \Omega_{1}^{T}$ (i.e., row norms of orthonormal basis), also estimated via randomization
- Rows are chosen randomly with probability proportional to leverage scores
- Rank adaptivity: computation gives rank estimate almost for free

LS and sketched LS

Fact about general (sketched) least-squares problems:

Theorem

Let $A=Q R$ be thin $Q R$ factorization with $Q \in \mathbb{R}^{m \times n}$, and let \hat{X}_{*} denote the solution for $\min _{X}\|S(A X-B)\|_{F}, S \in \mathbb{R}^{s \times m}, m>s>n$. Then

$$
\begin{equation*}
\left\|A \hat{X}_{*}-B\right\|_{F} \leq \frac{\|S\|_{2}}{\sigma_{\min }\left(S^{T} Q\right)} \min _{X}\|A X-B\|_{F} \tag{1}
\end{equation*}
$$

- Important that $\sigma_{\min }\left(S^{T} Q\right)$ not small (as in DEIM), and $\|S\|_{2}$ not enormous
- Good subset selection (leverage scores, QRCP, GEPP, Batson-Spielman-Srivastava etc) achieves this

Solving ill-conditioned LS

To improve stability of $\min _{\hat{F}}\left\|S\left(A_{(1)}^{T} \Omega_{1}^{T} \hat{F}^{T}-A_{(1)}^{T}\right)\right\|_{F}$ (ill-conditioned)

1. Tikhonov regularization: For a fixed $/$ small $\lambda>0$,

$$
\min _{\hat{F}^{(1)} \in \mathbb{R}^{n_{1} \times \hat{r}_{1}}}\left\|S_{1}\left(A_{(1)}^{T} \Omega_{1}^{T}\left(\hat{F}^{(1)}\right)^{T}-A_{(1)}^{T}\right)\right\|_{F}^{2}+\lambda\left\|\hat{F}^{(1)}\right\|_{F}^{2}
$$

Equivalent to $\min _{\hat{F}}\left\|\left[\begin{array}{c}S_{1} A_{(1)}^{T} \Omega_{1}^{T} \\ \sqrt{\lambda} I\end{array}\right] \hat{F}-\left[\begin{array}{c}S_{1} A_{(1)}^{T} \\ 0\end{array}\right]\right\|_{F}^{2}$.

Solving ill-conditioned LS

To improve stability of $\min _{\hat{F}}\left\|S\left(A_{(1)}^{T} \Omega_{1}^{T} \hat{F}^{T}-A_{(1)}^{T}\right)\right\|_{F}$ (ill-conditioned)

1. Tikhonov regularization: For a fixed/small $\lambda>0$,

$$
\min _{\hat{F}^{(1)} \in \mathbb{R}^{n_{1} \times \hat{r}_{1}}}\left\|S_{1}\left(A_{(1)}^{T} \Omega_{1}^{T}\left(\hat{F}^{(1)}\right)^{T}-A_{(1)}^{T}\right)\right\|_{F}^{2}+\lambda\left\|\hat{F}^{(1)}\right\|_{F}^{2}
$$

Equivalent to $\min _{\hat{F}}\left\|\left[\begin{array}{c}S_{1} A_{(1)}^{T} \Omega_{1}^{T} \\ \sqrt{\lambda} I\end{array}\right] \hat{F}-\left[\begin{array}{c}S_{1} A_{(1)}^{T} \\ 0\end{array}\right]\right\|_{F}^{2}$.
2. Iterative refinement: Compute residual $B:=A_{(1)}^{T}-\hat{F}^{(1)} \Omega_{1} A_{(1)}$, and solve

$$
\min _{\hat{F}^{(2)} \in \mathbb{R}^{n_{1} \times \hat{r}_{1}}}\left\|S_{2}\left(A_{(1)}^{T} \Omega_{1}^{T}\left(\hat{F}^{(2)}\right)^{T}-B\right)\right\|_{F}^{2}+\lambda\left\|\hat{F}^{(2)}\right\|_{F}^{2}
$$

Overall solution: $F=\hat{F}^{(1)}+\hat{F}^{(2)}$, yielding $A_{(1)} \approx F \Omega A_{(1)}$

RTSMS summary

$\overline{\text { Algorithm RTSMS: Given } \mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}} \text { and target tolerance tol, find }}$ approximate Tucker decomposition.
1: Set $\mathcal{B}^{\text {old }}:=\mathcal{A}$.
2: for $i=1, \ldots, d$ do
3: Find rank r_{i} via randomized rank estimator s.t. $\quad \sigma_{r_{i}}\left(B_{(i)}^{\text {old }}\right) \lesssim$ tol (unless r_{i} given)
4: Draw Gaussian $\Omega_{i} \in \mathbb{R}^{\hat{r}_{i} \times n_{i}}$ where $\hat{r}_{i}:=\operatorname{round}\left(1.5 r_{i}\right)$.
5: \quad Compute $\mathcal{B}^{\text {new }}=\mathcal{B}^{\text {old }} \times{ }_{i} \Omega_{i}$.
6: \quad Find F_{i} of size $n_{i} \times \hat{r}_{i}$ to minimize $\left\|\mathcal{B}^{\text {new }} \times_{i} F_{i}-\mathcal{B}^{\text {old }}\right\|_{F}$, using leverage scores+regularization+iterative refinement
7: Update $\mathcal{B}^{\text {old }}:=\mathcal{B}^{\text {new }}$.
8: end for
9: Set $\mathcal{C}:=\mathcal{B}^{\text {new }}$.

Comparison

Table: Costs for computing rank (r, r, \ldots, r) Tucker of an order-d tensor $n \times n \cdots \times n, r \ll n$. $\hat{r}=r+p$ (p : oversampling, e.g. $p=5$ or $p=0.5 r$).

Algorithm	dominant cost	sketch size	dominant operation
HOSVD [De Lathauwer et al 00]	$d n^{d+1}$		SVD of d unfoldings each of size $n \times n^{d-1}$
STHOSVD [Vannieuwenhoven et al 12]	n^{d+1}		SVD of $A_{(1)}$ which is $n \times n^{d-1}$. (Later unfoldings are smaller due to truncation)
R-HOSVD [Minster-Saibaba-Kilmer 20]	$d r n^{d}$	$\hat{r} \times n^{d-1}$	computing $A_{(i)} \Omega_{i}$ where Ω_{i} of size $n^{d-1} \times \hat{r}$ and then forming $Q_{i}^{T} A_{(i)}$ for all i
R-STHOSVD [Minster-Saibaba-Kilmer 20]	$r n^{d}$	$\hat{r} \times n^{d-1}$	forming $A_{(1)} \Omega_{1}$ with Ω_{1} of size $n^{d-1} \times \hat{r}$. Subsequent unfoldings and sketching matrices are smaller
single-pass [Sun et al.(20)]	$r n^{d}$	$\hat{r} \times n^{d-1}$	sketching by structured (Khatri-Rao product) dimension reduction maps
RTSMS	$\begin{gathered} r n^{d} \\ \left(n^{d} \log n\right) \end{gathered}$	$\hat{r} \times n$	computing $\Omega_{1} A_{(1)}$ with Ω_{1} of size $\hat{r} \times n^{d-1}$

Experiments

Runge function $f(x, y, z)=1 /\left(5+x^{2}+y^{2}+z^{2}\right)$

- RHOSVDSMS: RTSMS followed by orthogonalization of F_{i}
- R-STHOSVD: [Minster-Saibaba-Kilmer 2020]

More experiments

Wagon function $f(x, y, z)=\exp (\sin (50 x))+\sin (60 \exp (y)) \sin (60 z)+\cdots$

- RHOSVDSMS: RTSMS followed by orthogonalization of F_{i}
- R-STHOSVD: [Minster-Saibaba-Kilmer 2020]

Compressing videos

Summary

- Randomization for all sorts of NLA problems (we've seen low-rank approx (matrix, tensors), rank estimation, least squares, leverage scores)
- For tensors, single-mode-sketch \rightarrow small sketch, economical
- Challenging least-squares problem, stability improved by subsampling+regularization+iterative refinement (no proof)
[B. Hashemi and Y. Nakatsukasa, arXiv soon].

Summary

- Randomization for all sorts of NLA problems (we've seen low-rank approx (matrix, tensors), rank estimation, least squares, leverage scores)
- For tensors, single-mode-sketch \rightarrow small sketch, economical
- Challenging least-squares problem, stability improved by subsampling+regularization+iterative refinement (no proof)
[B. Hashemi and Y. Nakatsukasa, arXiv soon].

Post position available! (starting Mar 2024-Feb 2025)

Fixed-rank experiments

Hilbert tensor $100 \times 100 \times 100 \times 100, A_{i, j, k, l}=\frac{1}{i+j+k+l-3}$.

MLN: [Bucci-Robol 23] (based on GN but rather different)

Tomography example
original

R-STHOSVD

RTSMS

Analysis: basic facts

For any \hat{A} of form $\hat{A}=\left(A X\left(Y^{T} A X\right)^{\dagger} Y^{T}\right) A$, (incl. HMT, GN, Nyström)

- $\hat{A}=\mathcal{P}_{A X, Y} A$, where $\mathcal{P}_{A X, Y}:=A X\left(Y^{T} A X\right)^{\dagger} Y^{T}$ is (usually oblique) projection
- Also $A\left(X\left(Y^{T} A X\right)^{\dagger} Y^{T} A\right)=A \mathcal{P}_{X, A^{T} Y}$
- Error is

$$
\begin{aligned}
E & =A-X\left(Y^{T} A X\right)^{\dagger} Y^{T} A=\left(I-\mathcal{P}_{A X, Y}\right) A \\
& =A\left(I-\mathcal{P}_{X, A^{T} Y}\right)=\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-\mathcal{P}_{X, A^{T} Y}\right) .
\end{aligned}
$$

Also

$$
E=\left(I-\mathcal{P}_{A X, Y}\right) A=\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-X M^{T}\right)
$$

for any M, because $\left(I-\mathcal{P}_{A X, Y}\right) A X=0$.

Analysis for HMT

$$
\hat{A}=\left(A X\left(Y^{T} A X\right)^{\dagger} Y^{T}\right) A=\mathcal{P}_{A X, Y} A
$$

where $Y=A X$, so $\mathcal{P}_{A X, Y}=: \mathcal{P}_{A X}$ is orthogonal projector, $\left\|\mathcal{P}_{A X}\right\|_{2}=\left\|I-\mathcal{P}_{A X}\right\|_{2}=1$

- Error is $E_{\mathrm{HMT}}=\left(I-\mathcal{P}_{A X}\right) A\left(I-X M^{T}\right)$, so

$$
\left\|E_{\mathrm{HMT}}\right\|=\left\|\left(I-\mathcal{P}_{A X}\right) A\left(I-X M^{T}\right)\right\| \leq\left\|A\left(I-X M^{T}\right)\right\| .
$$

- Take M s.t. $X M^{T}=X\left(V^{T} X\right)^{\dagger} V^{T}=\mathcal{P}_{X, V}$ is oblique projection $\mathrm{w} /$ row space V^{T} (top \hat{r} sing. vecs. of A), $V^{T}\left(I-\mathcal{P}_{X, V}\right)=0$, so $A\left(I-\mathcal{P}_{X, V}\right)=A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)$.
- Thus with $\Sigma_{2}=\operatorname{diag}\left(\sigma_{\hat{r}+1}, \ldots, \sigma_{n}\right)$,

$$
\begin{aligned}
\left\|E_{\mathrm{HMT}}\right\| & \leq\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|=\left\|\Sigma_{2} V_{\perp} V_{\perp}^{T}\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|\Sigma_{2}\right\|\left\|\left(I-\mathcal{P}_{X, V}\right)\right\|_{2}=\left\|\Sigma_{2}\right\|\left\|\mathcal{P}_{X, V}\right\|_{2}=\left\|\Sigma_{2}\right\|\left\|X\left(V^{T} X\right)^{\dagger}\right\|_{2}
\end{aligned}
$$

'rectangular Gaussians are well-cond.:' $\left\|X\left(V^{T} X\right)^{\dagger}\right\|_{2} \lesssim \frac{\sqrt{m}+\sqrt{r}}{\sqrt{r}-\sqrt{\hat{r}}}=" O(1)$ "

Analysis for Generalized Nyström

$$
\begin{aligned}
& \hat{A}=\left(A X\left(Y^{T} A X\right)^{\dagger} Y^{T}\right) A=\mathcal{P}_{A X, Y} A, \\
& E=\left(I-\mathcal{P}_{A X, Y}\right) A=\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-X M^{T}\right) \text { choose } M \text { such that } \\
& X M^{T}=X\left(V^{T} X\right)^{\dagger} V^{T}=\mathcal{P}_{X, V}, \text { we have } \\
& \|E\|=\left\|\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|+\left\|\mathcal{P}_{A X, Y} A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\| .
\end{aligned}
$$

- Note $\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|$ exact same as HMT error
- Extra term $\left\|\mathcal{P}_{A X, Y}\right\|_{2}=O(1)$ as before if $c>1$ in $Y \in \mathbb{R}^{m \times c r}$
- Overall, about $\left(1+\left\|\mathcal{P}_{A X, Y}\right\|_{2}\right) \approx\left(1+\frac{\sqrt{n}+\sqrt{r+\ell}}{\sqrt{r+\ell-\sqrt{r}}}\right)$ times bigger expected error than HMT, still near-optimal

Precise analysis for Generalized Nyström

Theorem (Reproduces TYUC 2017 Thm.4.3)

Suppose X, Y are Gaussian. Then

$$
\sqrt{\mathbb{E}\left\|E_{\mathrm{GN}}\right\|_{F}^{2}} \leq \sqrt{1+\frac{r+\ell}{\ell-1}} \sqrt{\mathbb{E}\left\|E_{\mathrm{HMT}}\right\|_{F}^{2}}
$$

Proof. Write $\mathcal{P}_{A X, Y} A=Q\left(Q^{T}+Z\right) A$, where $Q=\operatorname{orth}(A X)$, so that $E_{\mathrm{GN}}=\left(I-\mathcal{P}_{A X, Y}\right) A=\left(I-Q Q^{T}\right) A+Q Z A=E_{\mathrm{HMT}}+Q Z A$. We have

$$
Q Z A=Q\left(\left(Y^{T} Q\right)^{\dagger} Y^{T}-Q^{T}\right) A=Q\left(Y^{T} Q\right)^{\dagger}\left(Y^{T} Q_{\perp}\right) Q_{\perp}^{T} A
$$

because $\left(\left(Y^{T} Q\right)^{\dagger} Y^{T}-Q^{T}\right) Q=0$. If Y is Gaussian then $Y^{T} Q$ and $Y^{T} Q_{\perp}$ are independent Gaussian, so bound follows.

Stability analysis sketch: $f l(\hat{A})=\hat{A}_{r}+\epsilon$
$\hat{A}=\left(A X\left(Y^{T} A X\right)_{\epsilon}^{\dagger}\right) Y^{T} A$. Each row of $A X\left(Y^{T} A X\right)_{\epsilon}^{\dagger}$ is underdetermined linear system, solve via SVD or (rank-revealing) QR.
Define $s_{i}^{T}=\left[A X\left(Y^{T} A X\right)_{\epsilon}^{\dagger}\right]$, ith row

$$
s_{i}=\left(\left(Y^{T} A X\right)^{T}\right)_{\epsilon}^{\dagger}[A X]_{i}^{T}=\left(X^{T} A^{T} Y\right)_{\epsilon}^{\dagger}[A X]_{i}^{T}=: M_{\epsilon}^{\dagger}[A X]_{i}^{T} .
$$

Computed version satisfies, by [ASNA Ch. 21] (\hat{U} : computed Range (M))

$$
\hat{s}_{i}=\left(\hat{U}^{T} M+\epsilon\right)^{\dagger}\left(\hat{U}^{T}[A X]_{i}^{T}+\epsilon\right)=\left(M+\epsilon_{i}\right)_{\epsilon}^{\dagger}\left([A X]_{i}^{T}+\epsilon\right)_{\epsilon} .
$$

Thus

$$
\begin{aligned}
& {\left[f l\left(A X\left(Y^{T} A X\right)_{\epsilon}^{\dagger} Y^{T} A\right)\right]_{i}=f l\left([A X+\epsilon]_{i}\left(Y^{T} A X+\epsilon_{i}\right)_{\epsilon}^{\dagger} Y^{T} A\right)} \\
& \quad=[A X]_{i}\left(Y^{T} \tilde{A} X\right)_{\epsilon}^{\dagger} Y^{T} A+\epsilon\left\|[A X]_{i}\left(Y^{T} \tilde{A} X\right)_{\epsilon}^{\dagger}\right\|\left\|Y^{T} A\right\| \\
& =[A X]_{i}\left(Y^{T} \tilde{A} X\right)_{\epsilon}^{\dagger} Y^{T} A+\epsilon=\left[\hat{A}_{r}\right]_{i}+\epsilon
\end{aligned}
$$

Row-wise stability follows from
$\left\|A X\left(Y^{T} A X\right)^{\dagger}\right\|=O(1), \quad\left\|A X\left(Y^{T} \tilde{A} X\right)_{\epsilon}^{\dagger}\right\|=O(1)$ (shown separately). ${ }^{40 / 33}$

Fast computation of leverage scores

Approximating Leverage scores of $M \in \mathbb{R}^{N \times n}, N \gg n$:

1. Sketch and $\mathrm{QR} S A=Q R$.
2. Row norms of $A R^{-1} G$, where G is $n \times O(1)$

Complexity: $O(N n \log N)$

Idea:

- $A R^{-1}$ is well-conditioned (as in Blendenpik), so roughly row-norms \propto leverage scores
- Estimate row-norm via $A R^{-1} G$ (trace/norm estimation)

Part II: Rank estimation

In most low-rank algorithms, the rank r is required as input

- If r too low: need to resketch and recompute
- If r too high: wasted computation

A fast rank estimator is thus highly desirable

Definition

$\operatorname{rank}_{\epsilon}(A)$: integer i s.t. $\sigma_{i}(A)>\epsilon \geq \sigma_{i+1}(A)$.

This work: $O\left(m n \log n+r^{3}\right)$ algorithm for rank estimation [with Maike Meier (Oxford), arXiv 2021]

- In many cases, extra cost is much lower (e.g. $O\left(r^{2}\right)$)
- Key idea: Sample the singular values via sketching, $Y^{T} A X$

Goal of a rank estimator

It is usually not necessary (or even possible, with subcubic work) to find the exact ϵ-rank.

We aim to find \hat{r} s.t.

- $\sigma_{\hat{r}+1}(A)=O(\epsilon)\left(\right.$ say, $\left.\sigma_{\hat{r}+1}(A)<10 \epsilon\right): \hat{r}$ is not a severe underestimate, and
- $\sigma_{\hat{r}}(A)=\Omega(\epsilon)$ (say, $\left.\sigma_{\hat{r}}(A)>0.1 \epsilon\right): \hat{r}$ is not a severe overestimate.

Goal of a rank estimator

It is usually not necessary (or even possible, with subcubic work) to find the exact ϵ-rank.

We aim to find \hat{r} s.t.

- $\sigma_{\hat{r}+1}(A)=O(\epsilon)$ (say, $\left.\sigma_{\hat{r}+1}(A)<10 \epsilon\right): \hat{r}$ is not a severe underestimate, and
- $\sigma_{\hat{r}}(A)=\Omega(\epsilon)$ (say, $\sigma_{\hat{r}}(A)>0.1 \epsilon$): \hat{r} is not a severe overestimate.

Consequently, it suffices to estimate $\sigma_{i}(A)$ to their order of magnitude

Previous studies on rank estimation

- Based on full factorization (e.g. Duersch-Gu 2020, Martinsson-Quintana-Orti-Heavner 2019)
- cubic $O\left(m n^{2}\right)$ complexity
- Ubaru-Saad (2016): polynomial approximation and spectral density estimates using Krylov subspace methods
- complexity difficult to predict
- Andoni-Nguyen (2013): theory that suggest rankest possible, no algorithm

Our algorithm: based on random sketches $A X, Y^{T} A X$ Key fact: $\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$ for leading i, and $\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

- Study of $\sigma_{i}(A X)$ is covariance estimate
- Usually, at least n samples required
- But leading sing vals good with many fewer samples

Main idea: random embedding preserves $O\left(\sigma_{i}\right)$

X, Y : Gaussian (or SRFT), scaled s.t. $\sigma_{i}\left(Q^{T} X\right), \sigma_{i}(Y Q) \in[1-\delta, 1+\delta]$. Key fact: $\frac{\sigma_{i}(A)}{\sigma_{i}\left(Y^{T} A X\right)}=O(1)$ for $i=1,2, \ldots, r$

$$
\begin{aligned}
& \sigma_{i}(A X) / \sigma_{i}(A)=O(1) \text { for leading } i \\
& \quad \text { Let } G \in \mathbb{C}^{n \times r} \text { and } \\
& \quad A G=U_{1} \Sigma_{1}\left(V_{1}^{*} G\right)+U_{2} \Sigma_{2}\left(V_{2}^{*} G\right)=U_{1} \Sigma_{1} G_{1}+U_{2} \Sigma_{2} G_{2}
\end{aligned}
$$

Lemma

For $i=1, \ldots, r$,

$$
\sigma_{\min }\left(\hat{G}_{\{i\}}\right) \leq \frac{\sigma_{i}(A G)}{\sigma_{i}(A)} \leq \sqrt{\sigma_{\max }\left(\tilde{G}_{\{r-i+1\}}\right)^{2}+\left(\frac{\sigma_{r+1}(A) \sigma_{\max }\left(G_{2}\right)}{\sigma_{i}(A)}\right)^{2}}
$$

$\hat{G}_{\{i\}} \in \mathbb{C}^{i \times r}$: first i rows of G_{1}, and $\tilde{G}_{\{r-i+1\}}$ last $r-i+1$ rows of G_{1}. If G is standard Gaussian, $\hat{G}_{\{i\}}, \tilde{G}_{\{r-i+1\}}$, and G_{2} are independent standard Gaussian.

PROOF: Courant-Fisher minimax characterization.

$\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$ cont'd

$$
\sigma_{\min }\left(\hat{G}_{\{i\}}\right) \leq \frac{\sigma_{i}(A G)}{\sigma_{i}(A)} \leq \sqrt{\sigma_{\max }\left(\tilde{G}_{\{r-i+1\}}\right)^{2}+\left(\frac{\sigma_{r+1}(A) \sigma_{\max }\left(G_{2}\right)}{\sigma_{i}(A)}\right)^{2}}
$$

When X scaled Gaussian (embedding)

Theorem

Let $X \in \mathbb{R}^{n \times r}$ with $X_{i j} \sim N(0,1 / r)$. Then for $i=1, \ldots, r$

$$
1-\sqrt{\frac{i}{r}} \leq \mathbb{E} \frac{\sigma_{i}(A X)}{\sigma_{i}(A)} \leq 1+\sqrt{\frac{r-i+1}{r}}+\frac{\sigma_{r+1}}{\sigma_{i}}\left(1+\sqrt{\frac{n-r}{r}}\right) .
$$

Failure probability decays squared-exponentially
Proof: Marchenko-Pastur ("rectangular random matrices are well-conditioned")

- Interpretation: $\frac{\sigma_{i}(A X)}{\sigma_{i}(A)} \approx 1$, esp. for small r

$\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$ cont'd

$$
\sigma_{\min }\left(\hat{G}_{\{i\}}\right) \leq \frac{\sigma_{i}(A G)}{\sigma_{i}(A)} \leq \sqrt{\sigma_{\max }\left(\tilde{G}_{\{r-i+1\}}\right)^{2}+\left(\frac{\sigma_{r+1}(A) \sigma_{\max }\left(G_{2}\right)}{\sigma_{i}(A)}\right)^{2}}
$$

When X general embedding

Theorem

Let \tilde{V}_{1} be A's top right singvecs, and suppose $\sigma_{i}\left(V_{1}^{T} X\right) \in[1-\epsilon, 1+\epsilon]$ for some $\epsilon<1$. Then, for $i=1, \ldots, \tilde{r}$

$$
1-\epsilon \leq \frac{\sigma_{i}(A X)}{\sigma_{i}(A)} \leq \sqrt{(1+\epsilon)^{2}+\left(\frac{\sigma_{\tilde{r}+1}(A)\|X\|_{2}}{\sigma_{i}(A)}\right)^{2}}
$$

ϵ-subspace embedding, (e.g. SRFT (subsampled random Fourier transform), i.e. $X=D F S, D$: diag, F : FFT, S : subsampling), also effective choices for X

Experiments $\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$

$A \in \mathbb{R}^{1000 \times 1000}$

- Leading singvals estimated reliably (when they decay)
- Tail effect nonnegligible (esp. for last $i \approx r$)
- Hence trust only leading (say 90%) samples

2nd step: $\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

Corollary (Combines Boutsidis-Gittens (13) and Tropp (11))

Let $A X \in \mathbb{R}^{m \times r_{1}}$, with $m \geq r_{1}$, and let $Y \in \mathbb{R}^{n \times r_{2}}$ be an SRFT matrix. Let $0<\epsilon<1 / 3$ and $0<\delta<1$. If

$$
r_{2} \geq 6 \eta \epsilon^{-2}\left[\sqrt{r_{1}}+\sqrt{8 \log (m / \delta)}\right]^{2} \log \left(r_{1} / \delta\right)
$$

then with failure probability at most 3δ

$$
\sqrt{1-\epsilon} \leq \frac{\sigma_{i}\left(Y^{T} A X\right)}{\sigma_{i}(A X)} \leq \sqrt{1+\epsilon},
$$

for each $i=1, \ldots, r_{1}$.

$\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

- Approximate orthogonalization: ideas from Blendenpik etc [Avron-Maymounkov-Toledo 10]
- In generalized Nyström, $Y^{T} A X=Q R$ already computed + rank-revealing $\mathrm{QR} \Rightarrow \sigma_{i}\left(Y^{T} A X\right) \approx \operatorname{diag}(R)$; only $O(r)$ extra cost

Experiments: $\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

$A X \in \mathbb{R}^{10^{5} \times 2000}$

$-\left|\frac{\sigma_{i}\left(Y^{T} A X\right)}{\sigma_{i}(A X)}-1\right|$ small esp. for leading singvals

- Reasonable estimates even for $i \approx r$

The rank estimation algorithm

 compute approximate ϵ-rank.
1: Set $\tilde{r}_{1}=$ round $\left(1.1 r_{1}\right)$ to oversample by 10%.
2: Draw $n \times \tilde{r}_{1}$ random embedding matrix X.
3: Form the $m \times \tilde{r}_{1}$ matrix $A X$.
2. Approximate orthogonalization:

4: Set $r_{2}=1.5 \tilde{r}_{1}$, draw an $r_{2} \times m$ SRFT embedding matrix Y.
5: Form the $r_{2} \times \tilde{r}_{1}$ matrix $Y^{T} A X$.

3. Singular value estimates:

6: Compute the first r_{1} singular values of $Y^{T} A X$.
7: Output smallest \hat{r} s.t. $\sigma_{\hat{r}+1}\left(Y^{T} A X\right) \leq \epsilon$.

Complexity: $O\left(m n \log n+r^{3}\right)$

Experiments: rank estimation

SP/FP: slow/fast polynomial decay in $\sigma_{i}(A)$, SE/FE: slow/fast exponential decay

Out of 100 runs; dot area reflects frequency

Experiments: gaps in singular values

$A_{G, I C}$: incoherent singvecs, $A_{G, C}$: coherent singvecs $(V=I)$

For coherent problems, Hashed (not subsampled) RFT helpful
[Cartis-Fiala-Shao 21]
For details, please see preprint Meier-N. "Fast randomized numerical rank estimation" arXiv 2021.

