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Description of problem

Given m raw data points, (ti , yi ), we want to fit a curve of the
form f (x, t) through these points so that we find

min
x

1

2

m∑
i=1

(yi − f (x, ti ))
2

︸ ︷︷ ︸
:=∥r(x)∥2

Pick an initial point x(0) and iterate.

Given x(k) we look for x(k+1) = x(k) + s(k).

How to choose s(k)?
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Levenberg-Marquardt
We need to find

min
x

1

2
∥r(x)∥2.

Levenberg-Marquardt (L-M) is one of the most widely used
methods for these problems.

Approximate r(x(k) + s(k)) by its first-order Taylor approximation

r(x(k) + s(k)) ≈ r(x(k)) + Jks
(k),

and then add a regularization term

s(k) = argmin
s

1

2
∥r(x(k)) + Jks∥2 +

σk
2
∥s∥2

σk is shrunk or grown between steps.
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NEPTUNE (NEutrals and Plasma TUrbulence Numerics)
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NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

https://excalibur.ac.uk/themes/high-priority-use-cases/
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Given a sparse matrix, A ∈ Rn×n, and vector b ∈ Rn, find x such
that

A x = b.
Our ideal algorithm would

▶ only use algebraic properties of A

▶ be able to take advantage of modern architectures

▶ be able to solve large problems with modest memory
requirements
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Krylov subspace methods
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Krylov subspace methods

Suppose we wish to solve

Ax = b.

Look for an approximation x(k) such that

x(k) − x(0) ∈ span
{
r(0),Ar(0), . . . ,Ak−1r(0)

}
,

where r(0) = b−Ax(0).

10



A zoo of Krylov methods

GMRES

Conjugate Gradients

MINRES

BiCG

BiCGStab

QMR

TFQMR

GCR

11



A zoo of Krylov methods

GMRES

Conjugate Gradients

MINRES

BiCG

BiCGStab

QMR

TFQMR

GCR

Methods which minimize something over the entire Krylov space
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A zoo of Krylov methods

GMRES

Conjugate Gradients

MINRES

BiCG

BiCGStab

QMR

TFQMR

GCR

Methods which minimize something over the entire Krylov space

Methods based on short term recurrences
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GMRES

▶ suitable for all linear systems

▶ minimizes ∥b−Axk∥2

Finds xk in the Krylov subspace

x0 + span{r(0),Ar(0), . . . ,Ak−1r(0)}
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Preconditioning

Ax = b

While any eigenvalues do not fully determine convergence for
GMRES [Greenbaum, Ptak, Strakos (1996)] , GMRES tends to work well if
A has a small condition number.

Preconditioning: solve the equivalent problem

M−1
L AM−T

R (MT
R x) = M−1

L b.

Let P = MLMT
R .

Competing aims:

▶ Need eigenvalues of M−1
L AM−1

R to be clustered

▶ Need a solve with ML or MR to be cheap
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Preconditioning
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Sparse Matrices and Graphs

[Scott and Tuma, Algorithms for Sparse Linear Systems, 2023] 15
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One-level Additive Schwarz
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One-level Additive Schwarz

[Scott and Tuma, Algorithms for Sparse Linear Systems, 2023]

M−1
ASM = RT

1 A11
−1R1 +

RT
2 A22

−1R2
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One-level Additive Schwarz

[Amestoy et al., Computational Geosciences, 2019]

M−1
ASM =

N∑
i=1

RT
i A−1

ii Ri
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One-level Restricted Additive Schwarz

M−1
ASM = RT

1 A11
−1R1 + RT

2 A22
−1R2

19



One-level Restricted Additive Schwarz

Partition of unity: Di ∈ Rni×ni non-negative, diagonal so that∑
RT
i DiRi = I
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One-level Restricted Additive Schwarz

M−1
RAS =

N∑
i=1

RT
i DiA

−1
ii Ri

19



Comparison
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Solution: Coarse spaces

M−1
⋆,AD = RT

0 A
−1
00 R0 +M−1

⋆

or

M−1
⋆,DEF = RT

0 A
−1
00 R0 +M−1

⋆ (I − ART
0 A

−1
00 R0)
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Spectral Coarse Spaces

Multigrid Brezina, Heberton et al. (1999), Charier, Falgout et al.
(2003), Kolev, Vassilevski, (2006), Efendiev, Galvis, Vassilevski
(2011)
DD Nataf, Xiang, Dolean, Spillane (2011), Spillane, Rixen (2013),
Spillane, Dolean et al. (2014), Klawonn, Radtke, Rheinbach
(2015), Klawonn, Kühn, Rheinbach (2016), Al Daas, Grigori
(2019), Al Daas, Grigori, Jolivet, Tournier (2021), Al Daas, Jolivet
(2021)
Indefinite/non-self-adjoint systems Manteuffel, Ruge,
Soutworth (2018), Manteuffel, Müzenmaier, Ruge, Soutworth
(2019), Bootland, Dolean et al. (2019, 2020, 2021, 2021, 2021,
2021), Dolean, Jolivet et al. (2021)
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Fictitious Subspace Lemma

Let H and HD be two Hilbert spaces, with scalar products (·, ·)
and (·, ·)D . Let A : H → H and B : HD → HD , and consider the
spd bilinear forms generated by these operators a(u, v) = (Au, v),
b(uD , vD) = (BuD , vD). Let R be an operator such that HD → H,
and R∗ be its adjoint. Suppose that:

▶ The operator R is surjective

▶ There exists cu > 0 such that

a(Rv ,Rv) ≤ cub(v , v), ∀v ∈ HD

▶ There exists cl > 0 such that for all u ∈ H, there exists
v ∈ HD such that u = Rv and

clb(v , v) ≤ a(Rv ,Rv) = a(u, u)

Then λ(RB−1R∗A) ∈ [cl , cu].
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v ∈ HD such that u = Rv and

clb(v , v) ≤ a(Rv ,Rv) = a(u, u)

Then λ(RB−1R∗A) ∈ [cl , cu].

R :
N∏
i=0

Rni → Rn

(ui )0≤i≤N 7−→
N∑
i=0

RT
i ui

B :
N∏
i=0

Rni → Rni

(ui )0≤i≤N 7−→
(
(RT

i ARi )ui

)
0≤i≤N

M−1
⋆,AD
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Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a
sparse SPD matrix is any SPSD matrix of the form:

Pi ÃiP
T
i =

 AIi AIΓ,i

AΓI ,i ÃΓ,i

 ,

where ÃΓ,i is any SPSD matrix such that

0 ≤ uT Ãiu ≤ uTAu, u ∈ Rn.

[Al Daas, Grigori (2019)]
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Building a coarse space
Given the local non-singular matrix Aii = RiAR

T
i , the local

splitting matrix Ãii = Ri ÃiiR
T
i , and the partition of unity matrix,

Di , let Li = ker(DiAiiDi ) and Ki = ker(Ãii ).

Consider the generalized eigenvalue problem: find (λ, u) such that

ΠiDiAiiDiΠiu = λÃiiu,

where Πi is the projection on range(Ãii ).

Given τ > 0, let Zi be the matrix whose columns form a basis of
the subspace

(Li ∩ Ki )
⊥Ki ⊕ span {u : |λ| > 1/τ}

Consider the coarse space defined as

RT
0 = [RT

1 D1Z1 . . . RT
NDNZN ]

25



How effective is this?
Theorem [Al Daas and Grigori, 2019]

If we build a spectral coarse space using local SPSD splitting
matrices, as described, then

1

2 + (2kc + 1)kmτ
≤ λ(M−1

ASM,additiveA) ≤ (kc + 1),

where

▶ τ is the parameter chosen in the construction of the coarse
space

▶ kc is the number of colours required to colour the graph of A
such that two neighbouring subdomains have different
colours, and

▶ km is the maximum number of overlapping subdomains
sharing a row of A.

Proof Show that this construction satisfies the fictitious subspace
lemma.
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Choice of splitting matrices?

GenEO (’Generalized Eigenvalue Problems in the Overlap’)
[Spillane, Nataf, et al. (2014)] fits into this framework.
Here

Pi ÃiP
T
i =

 AIi AIΓ,i

AΓI ,i ÃΓ,i

 .

Note that the upper bound in GenEO is algebraic, but the lower
bound requires properties from the discretization of the underlying
PDE.

The integral of the operator in
the overlapping region with its

neighbouring subdomains
.

27



A fully algebraic choice?

Suppose that A is diagonally dominant, and for each i we have

PiAP
⊤
i =

 AIi AIΓi

AΓIi AΓi AΓci

AcΓi Aci


Let si (j) =

∑
k

|AΓci (j , k)|, and define

Ãii =

[
AIi AIΓi

AΓIi ÃΓi

]
,

where ÃΓi = AΓi − diag(si ).

28



SPSD splitting matrix

Lemma [Al Daas, Jolivet, R. (2023)]

This local block splitting defines a local SPSD splitting matrix of A
with respect to subdomain i .

Proof
First, note that

Ãi (j , j) =


A(j , j) if j ∈ ΩIi ,

A(j , j)− si (j) if j ∈ ΩΓi ,

0 if j ∈ Ωci ,

▶ Ãi is symmetric and diagonally dominant, by construction,
hence SPSD

▶ A− Ãi is symmetric and diagonally dominant, hence SPSD

Therefore, by the local structure of Ãi , it is a SPSD splitting of A
wrt subdomain i .
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Numerical results: Set Up

▶ Used as a preconditioner for right-preconditioned GMRES:
restart parameter of 30, with relative tolerance of 10−8.

▶ Use the implementation as -pc hpddm block splitting

(part of PCHPDDM) in PETSc (from 3.17) to compute local
splitting matrices

▶ Uses 256 MPI processes

▶ Matrix reordered by applying ParMETIS to A+ AT .

▶ At most 60 eigenpairs are computed, and τ = 0.3.
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Numerical results: SuiteSparse
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Numerical results: Convection Diffusion

∇ · (Vu)− ν∇ · (κ∇u) = 0 in Ω

u = 0 in Γ0

u = 1 in Γ1

Discretized using SUPG
stabilization in FreeFEM.

The value of the velocity field V
is either:

V (x , y) =

(
x(1− x)(2y − 1)
−y(1− y)(2x − 1)

)
or V (x , y , z) =

 2x(1− x)(2y − 1)z
−y(1− y)(2x − 1)

−z(1− z)(2x − 1)(2y − 1)

 ,

in 2D and 3D, respectively.
[Notay (2012)]
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Solution

ν = 1
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Solution

ν = 10−2
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Solution

ν = 10−4
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Numerical results

2-level Additive Schwarz

GAMG

BoomerAMG 34



Saddle point systems?

What about systems of the form[
A BT

B −C

]
Not symmetric positive definite – do not fit in this framework

35



Saddle point systems

We have the block factorization[
A BT

B −C

]
=

[
I 0

BA−1 I

] [
A 0

0 −(C + BA−1BT )

] [
I A−1BT

0 I

]

It’s enough to be able to solve with A and S = C + BA−1BT .

If A ≈ D, a diagonal matrix, then we can apply the ideas earlier to
A and S (see [Al Daas, Jolivet, Scott (2022)] )
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Helmholtz optimal control

min
u∈U,z∈Z

1

2
∥W(u)− w∥2W +

β

2
∥z∥2Z

subject to

−∇2u − κ2u = F(z) in Ω

∂νu = B1(z) on Γ1

∂νu − iδκu = B2(z) on Γ2

u = 0 on Γ3.

See [Kouri, Ridzal, Tuminaro (2021)]
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Discretized problem

C 0 K ∗

0 βR L∗

K L 0

uz
λ

 =

w0
0
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Results

2 dimensions, 26 × 26 uniform mesh, β = 10−4.
DD uses 128 subdomains, κ(M−1S) ≤ 100.

Preconditioner
ω

0 1 2 4 6

DD 54 (2,653) 64 (2,724) 63 (2,729) 62 (2,773) 66 (2,781)

Kouri et al. 12 10 12 15 15
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Conclusions

▶ We have presented a fully algebraic DD preconditioner for
diagonally dominant matrices

▶ Although we have proved convergence for diagonally dominant
matrices, the construction is algebraic and can be applied to
any systems

▶ By breaking down more complex systems into SPD
subproblems, this can be applied more widely, e.g., to certain
saddle point systems.
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