

Algebraic Domain Decomposition Preconditioners for the Solution of Linear Systems

Tyrone Rees

UKRI-STFC Rutherford Appleton Laboratory Joint work with Hussam AI Daas (RAL) and Pierre Jolivet (CNRS)

Culham Centre for Fusion Energy

Optimization

Description of problem

Given *m* raw data points, (t_i, y_i) , we want to fit a curve of the form $f(\mathbf{x}, t)$ through these points so that we find

$$\min_{\mathbf{x}} \frac{1}{2} \underbrace{\sum_{i=1}^{m} (y_i - f(\mathbf{x}, t_i))^2}_{:= \|\mathbf{r}(\mathbf{x})\|^2}$$

Pick an initial point $\mathbf{x}^{(0)}$ and iterate.

Given $\mathbf{x}^{(k)}$ we look for $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$.

How to choose $\mathbf{s}^{(k)}$?

Description of problem

Given *m* raw data points, (t_i, y_i) , we want to fit a curve of the form $f(\mathbf{x}, t)$ through these points so that we find

$$\min_{\mathbf{x}} \frac{1}{2} \underbrace{\sum_{i=1}^{m} (y_i - f(\mathbf{x}, t_i))^2}_{:= \|\mathbf{r}(\mathbf{x})\|^2}$$

Pick an initial point $\mathbf{x}^{(0)}$ and iterate.

Given $\mathbf{x}^{(k)}$ we look for $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$.

How to choose $\mathbf{s}^{(k)}$?

Levenberg-Marquardt

We need to find

$$\min_{x} \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|^2.$$

Levenberg-Marquardt (L-M) is one of the most widely used methods for these problems.

Approximate $\mathbf{r}(\mathbf{x}^{(k)} + \mathbf{s}^{(k)})$ by its first-order Taylor approximation

$$\mathbf{r}(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) \approx \mathbf{r}(\mathbf{x}^{(k)}) + J_k \mathbf{s}^{(k)},$$

and then add a regularization term

$$\mathbf{s}^{(k)} = \arg\min_{\mathbf{s}} \frac{1}{2} \|\mathbf{r}(\mathbf{x}^{(k)}) + J_k \mathbf{s}\|^2 + \frac{\sigma_k}{2} \|\mathbf{s}\|^2$$

 σ_k is shrunk or grown between steps.

Levenberg-Marquardt

We need to find

$$\min_{x} \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|^2.$$

Levenberg-Marquardt (L-M) is one of the most widely used methods for these problems.

Approximate $\mathbf{r}(\mathbf{x}^{(k)} + \mathbf{s}^{(k)})$ by its first-order Taylor approximation

$$\mathbf{r}(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) \approx \mathbf{r}(\mathbf{x}^{(k)}) + J_k \mathbf{s}^{(k)},$$

and then add a regularization term

$$\mathbf{s}^{(k)} = \arg\min \frac{1}{2} \|\mathbf{r}(\mathbf{x}^{(k)}) + J_k \mathbf{s}\|^2 + \frac{\sigma_k}{2} \|\mathbf{s}\|^2$$

$$\sigma_k \text{ is shrunk or growth steps}$$

NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

https://excalibur.ac.uk/themes/high-priority-use-cases/

Given a sparse matrix, $A \in \mathbb{R}^{n \times n}$, and vector $\mathbf{b} \in \mathbb{R}^n$, find \mathbf{x} such that

$$A\mathbf{x} = \mathbf{b}.$$

Our ideal algorithm would

- only use algebraic properties of A
- be able to take advantage of modern architectures
- be able to solve large problems with modest memory requirements

Krylov subspace methods

Krylov subspace methods

Suppose we wish to solve

$$A\mathbf{x} = \mathbf{b}.$$

Look for an approximation $\mathbf{x}^{(k)}$ such that

$$\mathbf{x}^{(k)} - \mathbf{x}^{(0)} \in span\left\{\mathbf{r}^{(0)}, \mathcal{A}\mathbf{r}^{(0)}, \dots, \mathcal{A}^{k-1}\mathbf{r}^{(0)}
ight\},$$

where $\mathbf{r}^{(0)} = \mathbf{b} - \mathcal{A}\mathbf{x}^{(0)}$.

A zoo of Krylov methods

MINRES

BiCGStab

Conjugate Gradients

QMR

GMRES

BiCG

GCR

A zoo of Krylov methods

A zoo of Krylov methods

Methods based on short term recurrences

GMRES

suitable for all linear systems

• minimizes
$$\|\mathbf{b} - \mathcal{A}\mathbf{x}_k\|_2$$

Finds \mathbf{x}_k in the Krylov subspace

$$\mathbf{x}_0 + \operatorname{span}\{\mathbf{r}^{(0)}, \mathcal{A}\mathbf{r}^{(0)}, \dots, \mathcal{A}^{k-1}\mathbf{r}^{(0)}\}$$

Preconditioning

$\mathcal{A} \textbf{x} = \textbf{b}$

While any eigenvalues do not fully determine convergence for GMRES [Greenbaum, Ptak, Strakos (1996)] , GMRES tends to work well if ${\cal A}$ has a small condition number.

Preconditioning

$$\mathcal{A} \textbf{x} = \textbf{b}$$

While any eigenvalues do not fully determine convergence for GMRES [Greenbaum, Ptak, Strakos (1996)], GMRES tends to work well if ${\cal A}$ has a small condition number.

Preconditioning: solve the equivalent problem

$$\mathcal{M}_{L}^{-1}\mathcal{A}\mathcal{M}_{R}^{-T}(\mathcal{M}_{R}^{T}\mathbf{x})=\mathcal{M}_{L}^{-1}\mathbf{b}.$$

Let $\mathcal{P} = \mathcal{M}_L \mathcal{M}_R^T$. Competing aims:

- ▶ Need eigenvalues of $\mathcal{M}_L^{-1}\mathcal{A}\mathcal{M}_R^{-1}$ to be clustered
- Need a solve with \mathcal{M}_L or \mathcal{M}_R to be cheap

Preconditioning

Sparse Matrices and Graphs

1	1	*	*	*	*										
2	1	*	*		*	*									
3		*		*	*		*	*							
4		*	*	*	*	*		*	*						
5			*		*	*			*						
6				*			*	*		*	*				
7				*	*		*	*	*		*	*			
8					*	*		*	*			*			
9							*			*	*		*		
10							*	*		*	*	*	*	*	
11								*	*		*	*		*	
12										*	*		*	*	
13	(*	*	*	*	/

1	*	*	*	*									
	*	*		*	*								
	*		*	*							*	*	
	*	*	*	*	*							*	
		*		*	*							*	*
						*	*		*		*		
						*	*	*	*	*	*	*	
							*	*		*		*	*
						*	*		*	*			
							*	*	*	*			
			*			*	*				*	*	
			*	*	*		*	*			*	*	*
					*			*				*	*

$$M_{ASM}^{-1} = R_1^T A_{11}^{-1} R_1 +$$

[Scott and Tuma, Algorithms for Sparse Linear Systems, 2023]

/ *	*	*	*									
*	*		*	*								
*		*	*							*	*	
*	*	*	*	*							*	
	*		*	*							*	,
					*	*		*		*		
					*	*	*	*	*	*	*	
						*	*		*		*	2
					*	*		*	*			
						*	*	*	*			
		*			*	*				*	*	
		*	*	*		*	*			*	*	2
				*			*				*	>

$$M_{ASM}^{-1} = R_1^T A_{11}^{-1} R_1 + R_2^T A_{22}^{-1} R_2$$

[Scott and Tuma, Algorithms for Sparse Linear Systems, 2023] 17

[Amestoy et al., Computational Geosciences, 2019]

$$M_{ASM}^{-1} = R_1^T A_{11}^{-1} R_1 + R_2^T A_{22}^{-1} R_2$$

Partition of unity: $D_i \in \mathbb{R}^{n_i \times n_i}$ non-negative, diagonal so that

 $\sum R_i^T D_i R_i = I$

Partition of unity: $D_i \in \mathbb{R}^{n_i \times n_i}$ non-negative, diagonal so that

$$\sum R_i^T D_i R_i = I$$

e.g.,
$$R_1^T D_1 R_1 = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
, $R_2^T D_2 R_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Partition of unity: $D_i \in \mathbb{R}^{n_i \times n_i}$ non-negative, diagonal so that

$$\sum R_i^T D_i R_i = I$$

19

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^{\mathsf{T}} \mathbf{D}_i A_{ii}^{-1} R_i$$

Comparison

Comparison

Comparison

Solution: Coarse spaces

$$M_{\star,AD}^{-1} = R_0^T A_{00}^{-1} R_0 + M_{\star}^{-1}$$

Solution: Coarse spaces

$$M_{\star,AD}^{-1} = R_0^T A_{00}^{-1} R_0 + M_{\star}^{-1}$$

or

$$M_{\star,DEF}^{-1} = R_0^T A_{00}^{-1} R_0 + M_{\star}^{-1} (I - A R_0^T A_{00}^{-1} R_0)$$

Solution: Coarse spaces

$$M_{\star,AD}^{-1} = R_0^T A_{00}^{-1} R_0 + M_{\star}^{-1}$$

or

 $M_{\star,DEF}^{-1} = R_0^T A_{00}^{-1} R_0 + M_{\star}^{-1} (I - A R_0^T A_{00}^{-1} R_0)$

Spectral Coarse Spaces

Multigrid Brezina, Heberton *et al.* (1999), Charier, Falgout *et al.* (2003), Kolev, Vassilevski, (2006), Efendiev, Galvis, Vassilevski (2011)

DD Nataf, Xiang, Dolean, Spillane (2011), Spillane, Rixen (2013), Spillane, Dolean *et al.* (2014), Klawonn, Radtke, Rheinbach (2015), Klawonn, Kühn, Rheinbach (2016), Al Daas, Grigori (2019), Al Daas, Grigori, Jolivet, Tournier (2021), Al Daas, Jolivet (2021)

Indefinite/non-self-adjoint systems Manteuffel, Ruge, Soutworth (2018), Manteuffel, Müzenmaier, Ruge, Soutworth (2019), Bootland, Dolean *et al.* (2019, 2020, 2021, 2021, 2021, 2021), Dolean, Jolivet *et al.* (2021)

Fictitious Subspace Lemma

Let H and H_D be two Hilbert spaces, with scalar products (\cdot, \cdot) and $(\cdot, \cdot)_D$. Let $A : H \to H$ and $B : H_D \to H_D$, and consider the spd bilinear forms generated by these operators a(u, v) = (Au, v), $b(u_D, v_D) = (Bu_D, v_D)$. Let \mathcal{R} be an operator such that $H_D \to H$, and \mathcal{R}^* be its adjoint. Suppose that:

▶ The operator *R* is surjective

• There exists $c_u > 0$ such that

$$a(\mathcal{R}v,\mathcal{R}v) \leq c_u b(v,v), \ \forall v \in H_D$$

▶ There exists $c_l > 0$ such that for all $u \in H$, there exists $v \in H_D$ such that $u = \mathcal{R}v$ and

$$c_l b(v, v) \leq a(\mathcal{R}v, \mathcal{R}v) = a(u, u)$$

Then $\lambda(\mathcal{R}B^{-1}\mathcal{R}^*A) \in [c_l, c_u].$

Fictitious Subspace Lemma

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

$$P_{i}\widetilde{A}_{i}P_{i}^{T} = \begin{bmatrix} A_{Ii} & A_{I\Gamma,i} \\ A_{\Gamma I,i} & \widetilde{A}_{\Gamma,i} \end{bmatrix},$$

where $\widetilde{A}_{\Gamma,i}$ is any SPSD matrix such that

$$0 \leq u^T \widetilde{A}_i u \leq u^T A u, \ u \in \mathbb{R}^n.$$

[Al Daas, Grigori (2019)]

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

$$P_i \widetilde{A}_i P_i^{\mathsf{T}} = \begin{bmatrix} \widetilde{A}_{ii} \\ \end{bmatrix},$$

where $\widetilde{A}_{\Gamma,i}$ is any SPSD matrix such that

$$0 \leq u^T \widetilde{A}_i u \leq u^T A u, \ u \in \mathbb{R}^n.$$

[Al Daas, Grigori (2019)]

Building a coarse space

Given the local non-singular matrix $A_{ii} = R_i A R_i^T$, the local splitting matrix $\widetilde{A}_{ii} = R_i \widetilde{A}_{ii} R_i^T$, and the partition of unity matrix, D_i , let $L_i = ker(D_i A_{ii} D_i)$ and $K_i = ker(\widetilde{A}_{ii})$.

Consider the generalized eigenvalue problem: find (λ, u) such that

$$\Pi_i D_i A_{ii} D_i \Pi_i u = \lambda \widetilde{A}_{ii} u,$$

where Π_i is the projection on $range(\widetilde{A}_{ii})$.

Given $\tau > 0$, let Z_i be the matrix whose columns form a basis of the subspace

$$(L_i \cap K_i)^{\perp_{K_i}} \oplus span \{u : |\lambda| > 1/\tau\}$$

Consider the coarse space defined as

$$R_0^T = [R_1^T D_1 Z_1 \ldots R_N^T D_N Z_N]$$

How effective is this?

Theorem [AI Daas and Grigori, 2019]

If we build a spectral coarse space using local SPSD splitting matrices, as described, then

$$rac{1}{2+(2k_{c}+1)k_{m} au}\leq\lambda(M_{\mathcal{ASM},\mathit{additive}}^{-1}\mathcal{A})\leq(k_{c}+1),$$

where

- $\blacktriangleright \ \tau$ is the parameter chosen in the construction of the coarse space
- k_c is the number of colours required to colour the graph of A such that two neighbouring subdomains have different colours, and
- *k_m* is the maximum number of overlapping subdomains sharing a row of *A*.

Proof Show that this construction satisfies the fictitious subspace lemma.

Choice of splitting matrices?

GenEO ('Generalized Eigenvalue Problems in the Overlap') [Spillane, Nataf, et al. (2014)] fits into this framework. Here

$$P_{i}\widetilde{A}_{i}P_{i}^{T} = \begin{bmatrix} A_{li} & A_{l\Gamma,i} \\ A_{\Gamma l,i} & \widetilde{A}_{\Gamma,i} \end{bmatrix}.$$

Note that the upper bound in GenEO is algebraic, but the lower bound requires properties from the discretization of the underlying PDE.

> The integral of the operator in the overlapping region with its neighbouring subdomains

A fully algebraic choice?

Suppose that A is diagonally dominant, and for each i we have

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{Ii} & A_{I\Gamma i} \\ A_{\Gamma Ii} & A_{\Gamma i} & A_{\Gamma ci} \\ A_{c\Gamma i} & A_{ci} \end{pmatrix}$$

Let
$$s_i(j) = \sum_k |A_{\Gamma ci}(j, k)|$$
, and define
 $\widetilde{A}_{ii} = \begin{bmatrix} A_{Ii} & A_{I\Gamma i} \\ A_{\Gamma Ii} & \widetilde{A}_{\Gamma i} \end{bmatrix}$,

where $\widetilde{A}_{\Gamma i} = A_{\Gamma i} - diag(s_i)$.

SPSD splitting matrix

Lemma [Al Daas, Jolivet, R. (2023)]

This local block splitting defines a local SPSD splitting matrix of A with respect to subdomain i.

Proof

First, note that

$$\widetilde{A}_{i}(j,j) = \begin{cases} A(j,j) & \text{if } j \in \Omega_{Ii}, \\ A(j,j) - s_{i}(j) & \text{if } j \in \Omega_{\Gamma i}, \\ 0 & \text{if } j \in \Omega_{ci}, \end{cases}$$

Ã_i is symmetric and diagonally dominant, by construction, hence SPSD

• $A - \widetilde{A}_i$ is symmetric and diagonally dominant, hence SPSD Therefore, by the local structure of \widetilde{A}_i , it is a SPSD splitting of A wrt subdomain i.

Numerical results: Set Up

- Used as a preconditioner for right-preconditioned GMRES: restart parameter of 30, with relative tolerance of 10⁻⁸.
- Use the implementation as -pc_hpddm_block_splitting (part of PCHPDDM) in PETSc (from 3.17) to compute local splitting matrices
- Uses 256 MPI processes
- Matrix reordered by applying ParMETIS to $A + A^{T}$.
- At most 60 eigenpairs are computed, and $\tau = 0.3$.

Numerical results: SuiteSparse

Identifier	n	$\operatorname{nnz}(A)$	AGMG	BoomerAMG	GAMG	$M_{\rm deflated}^{-1}$	n_0
light_in_tissue	29,282	406,084	15	‡	53	6	7,230
finan 512	74,752	596,992	9	7	8	6	2,591
consph	83,334	6,010,480				93	31,136
Dubcova3	146,689	3,636,643		72	71	7	21,047
CO	221,119	7,666,057		25		26	56,135
nxp1	414,604	$2,\!655,\!880$	t	†	†	20	19,707
CoupCons3D	416,800	17,277,420		†	26	20	28,925
$parabolic_fem$	525,825	$3,\!674,\!625$	12	8	16	5	24,741
Chevron4	711,450	6,376,412		‡	†	5	22,785
a pache 2	715,176	4,817,870	14	11	35	8	45,966
tmt_sym	726,713	5,080,961	14	10	17	5	28,253
${\rm tmt_unsym}$	917,825	$4,\!584,\!801$	23	13	18	6	32,947
ecology2	999,999	4,995,991	18	12	18	6	34,080
thermal 2	1,228,045	8,580,313	18	14	20	26	40,098
atmosmodj	1,270,432	8,814,880	t	8	17	7	76,368
$G3_circuit$	1,585,478	7,660,826	25	12	35	8	71,385
Transport	1,602,111	$23,\!487,\!281$	18	10	98	9	76,800
memchip	2,707,524	13,343,948	t	15	t	36	57,942
$circuit5M_dc$	3,523,317	14,865,409	t	5		7	8,629

Numerical results: Convection Diffusion

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega$$
$$u = 0 \text{ in } \Gamma_0$$
$$u = 1 \text{ in } \Gamma_1$$

Discretized using SUPG stabilization in FreeFEM.

The value of the velocity field \boldsymbol{V} is either:

$$V(x,y) = \begin{pmatrix} x(1-x)(2y-1) \\ -y(1-y)(2x-1) \end{pmatrix} \quad \text{or} \quad V(x,y,z) = \begin{pmatrix} 2x(1-x)(2y-1)z \\ -y(1-y)(2x-1) \\ -z(1-z)(2x-1)(2y-1) \end{pmatrix},$$

in 2D and 3D, respectively.

[Notay (2012)]

Numerical results: Convection Diffusion

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega$$
$$u = 0 \text{ in } \Gamma_0$$
$$u = 1 \text{ in } \Gamma_1$$

Discretized using SUPG stabilization in FreeFEM.

The value of the velocity field ${\it V}$ is either:

$$V(x,y) = \begin{pmatrix} x(1-x)(2y-1) \\ -y(1-y)(2x-1) \end{pmatrix}$$
 or

$$V(x, y, z) = \begin{pmatrix} 2x(1-x)(2y-1)z \\ -y(1-y)(2x-1) \\ -z(1-z)(2x-1)(2y-1) \end{pmatrix},$$

[Notay (2012)]

Numerical results

Dimension	k	N	n	1	10^{-1}	$_{10^{-2}}^{\nu}$	10^{-3}	10^{-4}
2	1	1,024	$6.3\cdot 10^6$	23 (52,875)	20 (52,872)	19 (52,759)	20 (47,497)	21 (28,235)
3	2	4,096	$8.1 \cdot 10^{6}$	18 (1.8 · 10 ⁵)	$14_{(1.8 \cdot 10^5)}$	$11_{(1.6 \cdot 10^5)}$	16 (97,657)	$29_{\ (76,853)}$

2-level Additive Schwarz

Dimension	n	1	10^{-1}	$ \frac{\nu}{10^{-2}} $	10^{-3}	10^{-4}
2	$6.3\cdot 10^6$	42	48	88	†	†
3	$8.1 \cdot 10^{6}$	40	38	65	t	t

Dimension		ν					
	n	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	
2	$6.3 \cdot 10^{6}$	50	49	19	7	†	
3	$8.1 \cdot 10^{6}$	12	9	7	†	†	
Science and Ecchnology Facilities Council BoomerAMG							

Saddle point systems?

What about systems of the form

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix}$$

Not symmetric positive definite - do not fit in this framework

Saddle point systems

We have the block factorization

$$\begin{bmatrix} A & B^{T} \\ B & -C \end{bmatrix} = \begin{bmatrix} I & 0 \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & -(C + BA^{-1}B^{T}) \end{bmatrix} \begin{bmatrix} I & A^{-1}B^{T} \\ 0 & I \end{bmatrix}$$

Saddle point systems

We have the block factorization

$$\begin{bmatrix} A & B^{\mathsf{T}} \\ B & -C \end{bmatrix} = \begin{bmatrix} I & 0 \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & -(C + BA^{-1}B^{\mathsf{T}}) \end{bmatrix} \begin{bmatrix} I & A^{-1}B^{\mathsf{T}} \\ 0 & I \end{bmatrix}$$

It's enough to be able to solve with A and $S = C + BA^{-1}B^{T}$.

Saddle point systems

We have the block factorization

$$\begin{bmatrix} A & B^{T} \\ B & -C \end{bmatrix} = \begin{bmatrix} I & 0 \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & -(C + BA^{-1}B^{T}) \end{bmatrix} \begin{bmatrix} I & A^{-1}B^{T} \\ 0 & I \end{bmatrix}$$

It's enough to be able to solve with A and $S = C + BA^{-1}B^{T}$.

If $A \approx D$, a diagonal matrix, then we can apply the ideas earlier to A and S (see [Al Daas, Jolivet, Scott (2022)])

Helmholtz optimal control

$$\min_{u \in U, z \in Z} \frac{1}{2} \| \mathcal{W}(u) - w \|_{W}^{2} + \frac{\beta}{2} \| z \|_{Z}^{2}$$

subject to

$$-\nabla^{2}u - \kappa^{2}u = \mathcal{F}(z) \text{ in } \Omega$$
$$\partial_{\nu}u = \mathcal{B}_{1}(z) \text{ on } \Gamma_{1}$$
$$\partial_{\nu}u - i\delta\kappa u = \mathcal{B}_{2}(z) \text{ on } \Gamma_{2}$$
$$u = 0 \text{ on } \Gamma_{3}.$$

See [Kouri, Ridzal, Tuminaro (2021)]

Discretized problem

$$\begin{bmatrix} C & 0 & K^* \\ 0 & \beta R & L^* \\ K & L & 0 \end{bmatrix} \begin{bmatrix} u \\ z \\ \lambda \end{bmatrix} = \begin{bmatrix} w \\ 0 \\ 0 \end{bmatrix}$$

Discretized problem

$$\begin{bmatrix} C & 0 & K^* \\ 0 & \beta R & L^* \\ K & L & 0 \end{bmatrix} \begin{bmatrix} u \\ z \\ \lambda \end{bmatrix} = \begin{bmatrix} w \\ 0 \\ 0 \end{bmatrix}$$

Discretized problem

Discretized problem

Results

2 dimensions, $2^6 \times 2^6$ uniform mesh, $\beta = 10^{-4}$. DD uses 128 subdomains, $\kappa(M^{-1}S) \leq 100$.

Preconditioner	ω				
	0	1	2	4	6
DD	54 (2,653)	64 (2,724)	63 (2,729)	62 (2,773)	66 (2,781)
Kouri et al.	12	10	12	15	15

Conclusions

- We have presented a fully algebraic DD preconditioner for diagonally dominant matrices
- Although we have proved convergence for diagonally dominant matrices, the construction is algebraic and can be applied to any systems
- By breaking down more complex systems into SPD subproblems, this can be applied more widely, e.g., to certain saddle point systems.

References

- Al Daas and Grigori, 'A Class of Efficient Locally Constructed Preconditioners Based on Coarse Spaces' SIMAX (2019)
- Al Daas, Jolivet and Rees, 'Efficient Algebraic Two-Level Schwarz Preconditioner for Sparse Matrices' SISC (2023)
- Jolivet et al., 'HPPDM high performance unified framework for domain decomposition methods' https://github.com/hpddm/hpddm