Science and Technology Facilities Council

Algebraic Domain Decomposition Preconditioners for the Solution of Linear

 SystemsTyrone Rees
UKRI-STFC Rutherford Appleton Laboratory
Joint work with Hussam AI Daas (RAL) and Pierre Jolivet (CNRS)

Culham Centre for Fusion Energy

Optimization

Sasview

Optimization

Sasview

Description of problem

Given m raw data points, $\left(t_{i}, y_{i}\right)$, we want to fit a curve of the form $f(\mathbf{x}, t)$ through these points so that we find

$$
\min _{\mathbf{x}} \frac{1}{2} \underbrace{\sum_{i=1}^{m}\left(y_{i}-f\left(\mathbf{x}, t_{i}\right)\right)^{2}}_{:=\|\mathbf{r} \mathbf{(x)}\|^{2}}
$$

Pick an initial point $\mathbf{x}^{(0)}$ and iterate.
Given $\mathbf{x}^{(k)}$ we look for $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{s}^{(k)}$.
How to choose $\mathbf{s}^{(k)}$?

Description of problem

Given m raw data points, $\left(t_{i}, y_{i}\right)$, we want to fit a curve of the form $f(\mathbf{x}, t)$ through these points so that we find

$$
\min _{\mathbf{x}} \frac{1}{2} \underbrace{\sum_{i=1}^{m}\left(y_{i}-f\left(\mathbf{x}, t_{i}\right)\right)^{2}}_{:=\|\mathbf{r} \mathbf{(x)}\|^{2}}
$$

Pick an initial point $\mathbf{x}^{(0)}$ and iterate.
Given $\mathbf{x}^{(k)}$ we look for $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{s}^{(k)}$.
How to choose $\mathbf{s}^{(k)}$?

Levenberg-Marquardt

We need to find

$$
\min _{x} \frac{1}{2}\|\mathbf{r}(\mathbf{x})\|^{2}
$$

Levenberg-Marquardt (L-M) is one of the most widely used methods for these problems.

Approximate $\mathbf{r}\left(\mathbf{x}^{(k)}+\mathbf{s}^{(k)}\right)$ by its first-order Taylor approximation

$$
\mathbf{r}\left(\mathbf{x}^{(k)}+\mathbf{s}^{(k)}\right) \approx \mathbf{r}\left(\mathbf{x}^{(k)}\right)+J_{k} \mathbf{s}^{(k)}
$$

and then add a regularization term

$$
\mathbf{s}^{(k)}=\arg \min _{\mathbf{s}} \frac{1}{2}\left\|\mathbf{r}\left(\mathbf{x}^{(k)}\right)+J_{k} \mathbf{s}\right\|^{2}+\frac{\sigma_{k}}{2}\|\mathbf{s}\|^{2}
$$

σ_{k} is shrunk or grown between steps.

Levenberg-Marquardt

We need to find

$$
\min _{x} \frac{1}{2}\|\mathbf{r}(\mathbf{x})\|^{2}
$$

Levenberg-Marquardt (L-M) is one of the most widely used methods for these problems.

Approximate $\mathbf{r}\left(\mathbf{x}^{(k)}+\mathbf{s}^{(k)}\right)$ by its first-order Taylor approximation

$$
\mathbf{r}\left(\mathbf{x}^{(k)}+\mathbf{s}^{(k)}\right) \approx \mathbf{r}\left(\mathbf{x}^{(k)}\right)+J_{k} \mathbf{s}^{(k)}
$$

and then add a regularization term
$\mathbf{s}^{(k)}=\arg \min \frac{1}{\rho}\left\|\mathbf{r}\left(\mathbf{x}^{(k)}\right)+J_{k} \mathbf{s}\right\|^{2}+\frac{\sigma_{k}}{2}\|\mathbf{s}\|^{2}$
σ_{k} is shrunk or $g\left(J_{k}^{T} J_{k}+\sigma_{k} I\right) \mathbf{s}^{(k)}=-J_{k}^{T} \mathbf{r}\left(\mathbf{x}^{(k)}\right)$

Levenberg-M

We need to f
IMM
K. Madsen, H.B. Nielsen, O. Tingleff

Informatics and Mathematical Modelling
Technical University of Denmark

Science and
Technology
Facilities Council

NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

https://excalibur.ac.uk/themes/high-priority-use-cases/

ExCALBUR

Facilities Council

Given a sparse matrix, $A \in \mathbb{R}^{n \times n}$, and vector $\mathbf{b} \in \mathbb{R}^{n}$, find \mathbf{x} such that

$A x=b$.

Our ideal algorithm would

- only use algebraic properties of A
- be able to take advantage of modern architectures
- be able to solve large problems with modest memory requirements

Krylov subspace methods

Krylov subspace methods

Suppose we wish to solve

$$
\mathcal{A} \mathbf{x}=\mathbf{b}
$$

Look for an approximation $\mathbf{x}^{(k)}$ such that

$$
\mathbf{x}^{(k)}-\mathbf{x}^{(0)} \in \operatorname{span}\left\{\mathbf{r}^{(0)}, \mathcal{A} \mathbf{r}^{(0)}, \ldots, \mathcal{A}^{k-1} \mathbf{r}^{(0)}\right\}
$$

where $\mathbf{r}^{(0)}=\mathbf{b}-\mathcal{A} \mathbf{x}^{(0)}$.

A zoo of Krylov methods

TFQMR

MINRES

BiCGStab

Conjugate Gradients

QMR

GMRES
BiCG

A zoo of Krylov methods

TFQMR

MINRES

BiCGStab

Conjugate Gradients QMR

GMRES

BiCG

GCR

Methods which minimize something over the entire Krylov space

A zoo of Krylov methods

TFQMR

MINRES

BiCGStab

Conjugate Gradients

QMR

GMRES

BiCG

GCR

Methods which minimize something over the entire Krylov space
Methods based on short term recurrences

GMRES

- suitable for all linear systems
- minimizes $\left\|\mathbf{b}-\mathcal{A} \mathbf{x}_{k}\right\|_{2}$

Finds \mathbf{x}_{k} in the Krylov subspace

$$
\mathbf{x}_{0}+\operatorname{span}\left\{\mathbf{r}^{(0)}, \mathcal{A} \mathbf{r}^{(0)}, \ldots, \mathcal{A}^{k-1} \mathbf{r}^{(0)}\right\}
$$

Preconditioning

$$
\mathcal{A} \mathbf{x}=\mathbf{b}
$$

While any eigenvalues do not fully determine convergence for GMRES [Greenbaum, Ptak, Strakos (1996)], GMRES tends to work well if \mathcal{A} has a small condition number.

Preconditioning

$$
\mathcal{A} \mathbf{x}=\mathbf{b}
$$

While any eigenvalues do not fully determine convergence for GMRES [Greenbaum, Ptak, Strakos (1996)], GMRES tends to work well if \mathcal{A} has a small condition number.

Preconditioning: solve the equivalent problem

$$
\mathcal{M}_{L}^{-1} \mathcal{A} \mathcal{M}_{R}^{-T}\left(\mathcal{M}_{R}^{T} \mathbf{x}\right)=\mathcal{M}_{L}^{-1} \mathbf{b}
$$

Let $\mathcal{P}=\mathcal{M}_{L} \mathcal{M}_{R}^{T}$.
Competing aims:

- Need eigenvalues of $\mathcal{M}_{L}^{-1} \mathcal{A} \mathcal{M}_{R}^{-1}$ to be clustered
- Need a solve with \mathcal{M}_{L} or \mathcal{M}_{R} to be cheap

Preconditioning

Technology

Sparse Matrices and Graphs

Partitioning

Partitioning

Partitioning

Partitioning

One-level Additive Schwarz

One-level Additive Schwarz

$$
M_{A S M}^{-1}=R_{1}^{T} A_{11}^{-1} R_{1}+
$$

One-level Additive Schwarz

$$
M_{A S M}^{-1}=R_{1}^{T} A_{11}{ }^{-1} R_{1}+R_{2}^{\top} A_{22}{ }^{-1} R_{2}
$$

One-level Additive Schwarz

One-level Restricted Additive Schwarz

$$
\begin{aligned}
& M_{A S M}^{-1}=R_{1}^{T} A_{11}{ }^{-1} R_{1}+R_{2}^{T} A_{22}{ }^{-1} R_{2}
\end{aligned}
$$

One-level Restricted Additive Schwarz

Partition of unity: $D_{i} \in \mathbb{R}^{n_{i} \times n_{i}}$ non-negative, diagonal so that

$$
\sum R_{i}^{T} D_{i} R_{i}=I
$$

One-level Restricted Additive Schwarz

Partition of unity: $D_{i} \in \mathbb{R}^{n_{i} \times n_{i}}$ non-negative, diagonal so that

$$
\sum R_{i}^{T} D_{i} R_{i}=I
$$

One-level Restricted Additive Schwarz

Partition of unity: $D_{i} \in \mathbb{R}^{n_{i} \times n_{i}}$ non-negative, diagonal so that

$$
\sum R_{i}^{T} D_{i} R_{i}=I
$$

One-level Restricted Additive Schwarz

$$
M_{R A S}^{-1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} A_{i i}^{-1} R_{i}
$$

Comparison

Comparison

Comparison

Solution: Coarse spaces

$$
M_{\star, A D}^{-1}=R_{0}^{T} A_{00}^{-1} R_{0}+M_{\star}^{-1}
$$

Solution: Coarse spaces

$$
\begin{gathered}
M_{\star, A D}^{-1}=R_{0}^{T} A_{00}^{-1} R_{0}+M_{\star}^{-1} \\
\text { or } \\
M_{\star, D E F}^{-1}=R_{0}^{T} A_{00}^{-1} R_{0}+M_{\star}^{-1}\left(I-A R_{0}^{T} A_{00}^{-1} R_{0}\right)
\end{gathered}
$$

Solution: Coarse spaces

$$
\begin{gathered}
M_{\star, A D}^{-1}=R_{0}^{T} A_{00}^{-1} R_{0}+M_{\star}^{-1} \\
\text { or } \\
M_{\star, D E F}^{-1}=R_{0}^{T} A_{00}^{-1} R_{0}+M_{\star}^{-1}\left(I-A R_{0}^{T} A_{00}^{-1} R_{0}\right)
\end{gathered}
$$

Spectral Coarse Spaces

Multigrid Brezina, Heberton et al. (1999), Charier, Falgout et al.
(2003), Kolev, Vassilevski, (2006), Efendiev, Galvis, Vassilevski (2011)

DD Nataf, Xiang, Dolean, Spillane (2011), Spillane, Rixen (2013), Spillane, Dolean et al. (2014), Klawonn, Radtke, Rheinbach (2015), Klawonn, Kühn, Rheinbach (2016), Al Daas, Grigori
(2019), AI Daas, Grigori, Jolivet, Tournier (2021), AI Daas, Jolivet (2021)

Indefinite/non-self-adjoint systems Manteuffel, Ruge,
Soutworth (2018), Manteuffel, Müzenmaier, Ruge, Soutworth (2019), Bootland, Dolean et al. (2019, 2020, 2021, 2021, 2021, 2021), Dolean, Jolivet et al. (2021)

Fictitious Subspace Lemma

Let H and H_{D} be two Hilbert spaces, with scalar products (\cdot, \cdot) and $(\cdot, \cdot)_{D}$. Let $A: H \rightarrow H$ and $B: H_{D} \rightarrow H_{D}$, and consider the spd bilinear forms generated by these operators $a(u, v)=(A u, v)$, $b\left(u_{D}, v_{D}\right)=\left(B u_{D}, v_{D}\right)$. Let \mathcal{R} be an operator such that $H_{D} \rightarrow H$, and \mathcal{R}^{*} be its adjoint. Suppose that:

- The operator \mathcal{R} is surjective
- There exists $c_{u}>0$ such that

$$
a(\mathcal{R} v, \mathcal{R} v) \leq c_{u} b(v, v), \forall v \in H_{D}
$$

- There exists $c_{l}>0$ such that for all $u \in H$, there exists $v \in H_{D}$ such that $u=\mathcal{R} v$ and

$$
c_{l} b(v, v) \leq a(\mathcal{R} v, \mathcal{R} v)=a(u, u)
$$

Then $\lambda\left(\mathcal{R} B^{-1} \mathcal{R}^{*} A\right) \in\left[c_{l}, c_{u}\right]$.

Fictitious Subspace Lemma

$\begin{gathered} \mathcal{R}: \prod_{i=0}^{N} \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{n} \\ \left(u_{i}\right)_{0 \leq i \leq N} \longmapsto \sum_{i=0}^{N} R_{i}^{T} u_{i} \end{gathered}$	$\begin{array}{cc} \text { ert } \\ \mathrm{an} & \mathcal{B}: \prod_{i=0}^{N} \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{n_{i}} \\ \mathrm{~d} \mathrm{~b} \\ \mathrm{t} \mathcal{R} \\ \text { pos } & \left(u_{i}\right)_{0 \leq i \leq N} \longmapsto\left(\left(R_{i}^{T} A R_{i}\right) u_{i}\right)_{0 \leq i \leq N} \\ \hline \end{array}$
The operator \mathcal{R} is surjective There exists $c_{u}>0$ such that $a(\mathcal{R} v, \mathcal{R} v) \leq c_{u} b(v, v), \forall v \in H_{D}$	

- There exists $c_{l}>0$ such that for all $u \in H$, there exists $v \in H_{D}$ such that $u=\mathcal{R} v$ and

$$
c_{l} b(v, v) \leq a(\mathcal{R} v, \mathcal{R} v)=a(u, u)
$$

Then $\lambda\left(\mathcal{R} B^{-1} \mathbb{R}^{*} A\right) \in\left[c_{1}, c_{u}\right]$.

Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

$$
P_{i} \widetilde{A}_{i} P_{i}^{T}=\left[\begin{array}{cc}
A_{l i} & A_{\not \Gamma, i} \\
A_{\Gamma l, i} & \widetilde{A}_{\Gamma, i}
\end{array}\right]
$$

where $\widetilde{A}_{\Gamma, i}$ is any SPSD matrix such that

$$
0 \leq u^{T} \widetilde{A}_{i} u \leq u^{T} A u, u \in \mathbb{R}^{n}
$$

Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a sparse SPD matrix is any SPSD matrix of the form:

$$
P_{i} \widetilde{A}_{i} P_{i}^{T}=\left[\begin{array}{|c}
\widetilde{A}_{i i} \\
\end{array}\right]
$$

where $\widetilde{A}_{\Gamma, i}$ is any SPSD matrix such that

$$
0 \leq u^{T} \widetilde{A}_{i} u \leq u^{T} A u, u \in \mathbb{R}^{n}
$$

Building a coarse space

Given the local non-singular matrix $A_{i i}=R_{i} A R_{i}^{T}$, the local splitting matrix $\widetilde{A}_{i i}=R_{i} \widetilde{A}_{i i} R_{i}^{T}$, and the partition of unity matrix, D_{i}, let $L_{i}=\operatorname{ker}\left(D_{i} A_{i i} D_{i}\right)$ and $K_{i}=\operatorname{ker}\left(\widetilde{A}_{i i}\right)$.

Consider the generalized eigenvalue problem: find (λ, u) such that

$$
\Pi_{i} D_{i} A_{i i} D_{i} \Pi_{i} u=\lambda \widetilde{A}_{i i} u
$$

where Π_{i} is the projection on range $\left(\widetilde{A}_{i i}\right)$.
Given $\tau>0$, let Z_{i} be the matrix whose columns form a basis of the subspace

$$
\left(L_{i} \cap K_{i}\right)^{\perp \kappa_{i}} \oplus \operatorname{span}\{u:|\lambda|>1 / \tau\}
$$

Consider the coarse space defined as

$$
R_{0}^{T}=\left[\begin{array}{llll}
R_{1}^{T} D_{1} Z_{1} & \ldots & R_{N}^{T} D_{N} Z_{N}
\end{array}\right]
$$

How effective is this?

Theorem [Al Daas and Grigori, 2019]

If we build a spectral coarse space using local SPSD splitting matrices, as described, then

$$
\frac{1}{2+\left(2 k_{c}+1\right) k_{m} \tau} \leq \lambda\left(M_{\text {ASM,additive }}^{-1} A\right) \leq\left(k_{c}+1\right)
$$

where

- τ is the parameter chosen in the construction of the coarse space
- k_{c} is the number of colours required to colour the graph of A such that two neighbouring subdomains have different colours, and
- k_{m} is the maximum number of overlapping subdomains sharing a row of A.

Proof Show that this construction satisfies the fictitious subspace lemma.

Choice of splitting matrices?

GenEO ('Generalized Eigenvalue Problems in the Overlap')
[Spillane, Nataf, et al. (2014)] fits into this framework.
Here

$$
P_{i} \widetilde{A}_{i} P_{i}^{T}=\left[\begin{array}{cc}
A_{l i} & A_{l \Gamma, i} \\
A_{\Gamma l, i} & \widetilde{A}_{\Gamma, i}
\end{array}\right]
$$

Note that the upper bound in GenEO is algebraic, but the lower bound requires properties from the discretization of the underlying PDE.

The integral of the operator in the overlapping region with its neighbouring subdomains

A fully algebraic choice?

Suppose that A is diagonally dominant, and for each i we have

$$
P_{i} A P_{i}^{\top}=\left(\begin{array}{ccc}
A_{l i} & A_{l \Gamma i} & \\
A_{\Gamma l i} & A_{\Gamma i} & A_{\Gamma c i} \\
& A_{c \Gamma i} & A_{c i}
\end{array}\right)
$$

Let $s_{i}(j)=\sum_{k}\left|A_{\Gamma c i}(j, k)\right|$, and define

$$
\tilde{A}_{i i}=\left[\begin{array}{cc}
A_{l i} & A_{l \Gamma i} \\
A_{\Gamma l i} & \widetilde{A}_{\Gamma i}
\end{array}\right],
$$

where $\widetilde{A}_{\Gamma i}=A_{\Gamma i}-\operatorname{diag}\left(s_{i}\right)$.

SPSD splitting matrix

Lemma [Al Daas, Jolivet, R. (2023)]
This local block splitting defines a local SPSD splitting matrix of A with respect to subdomain i.

Proof

First, note that

$$
\widetilde{A}_{i}(j, j)= \begin{cases}A(j, j) & \text { if } j \in \Omega_{l i}, \\ A(j, j)-s_{i}(j) & \text { if } j \in \Omega_{\Gamma i}, \\ 0 & \text { if } j \in \Omega_{c i},\end{cases}
$$

- \widetilde{A}_{i} is symmetric and diagonally dominant, by construction, hence SPSD
- $A-\widetilde{A}_{i}$ is symmetric and diagonally dominant, hence SPSD Therefore, by the local structure of \widetilde{A}_{i}, it is a SPSD splitting of A wrt subdomain i.

Numerical results: Set Up

- Used as a preconditioner for right-preconditioned GMRES: restart parameter of 30 , with relative tolerance of 10^{-8}.
- Use the implementation as -pc_hpddm_block_splitting (part of PCHPDDM) in PETSc (from 3.17) to compute local splitting matrices
- Uses 256 MPI processes
- Matrix reordered by applying ParMETIS to $A+A^{T}$.
- At most 60 eigenpairs are computed, and $\tau=0.3$.

Numerical results: SuiteSparse

Identifier	n	$\mathrm{nnz}(A)$	AGMG	BoomerAMG	GAMG	$M_{\text {deflated }}^{-1}$	n_{0}
light_in_tissue	29,282	406,084	15	\ddagger	53	$\mathbf{6}$	7,230
finan512	74,752	596,992	9	7	8	$\mathbf{6}$	2,591
consph	83,334	$6,010,480$				$\mathbf{9 3}$	31,136
Dubcova3	146,689	$3,636,643$		72	71	$\mathbf{7}$	21,047
CO	221,119	$7,666,057$		$\mathbf{2 5}$		26	56,135
nxp1	414,604	$2,655,880$	\dagger	\dagger	\dagger	$\mathbf{2 0}$	19,707
CoupCons3D	416,800	$17,277,420$		\dagger	26	$\mathbf{2 0}$	28,925
parabolic_fem	525,825	$3,674,625$	12	8	16	$\mathbf{5}$	24,741
Chevron4	711,450	$6,376,412$		\ddagger	\dagger	$\mathbf{5}$	22,785
apache2	715,176	$4,817,870$	14	11	35	$\mathbf{8}$	45,966
tmt_sym	726,713	$5,080,961$	14	10	17	$\mathbf{5}$	28,253
tmt_unsym	917,825	$4,584,801$	23	13	18	$\mathbf{6}$	32,947
ecology2	999,999	$4,995,991$	18	12	18	$\mathbf{6}$	34,080
thermal2	$1,228,045$	$8,580,313$	18	$\mathbf{1 4}$	20	26	40,098
atmosmodj	$1,270,432$	$8,814,880$	\dagger	8	17	$\mathbf{7}$	76,368
G3_circuit	$1,585,478$	$7,660,826$	25	12	35	$\mathbf{8}$	71,385
Transport	$1,602,111$	$23,487,281$	18	10	98	$\mathbf{9}$	76,800
memchip	$2,707,524$	$13,343,948$	\dagger	15	\dagger	36	57,942
circuit5M_dc	$3,523,317$	$14,865,409$	\dagger	$\mathbf{1 4}$		7	8,629

Numerical results

Numerical results

Numerical results

Numerical results: Convection Diffusion

$$
\begin{aligned}
\nabla \cdot(V u)-\nu \nabla \cdot(\kappa \nabla u) & =0 \text { in } \Omega \\
u & =0 \text { in } \Gamma_{0} \\
u & =1 \text { in } \Gamma_{1}
\end{aligned}
$$

Discretized using SUPG stabilization in FreeFEM.

The value of the velocity field V is either:

$$
V(x, y)=\binom{x(1-x)(2 y-1)}{-y(1-y)(2 x-1)} \quad \text { or } \quad V(x, y, z)=\left(\begin{array}{c}
2 x(1-x)(2 y-1) z \\
-y(1-y)(2 x-1) \\
-z(1-z)(2 x-1)(2 y-1)
\end{array}\right),
$$

in 2D and 3D, respectively.

Numerical results: Convection Diffusion

$$
\begin{aligned}
\nabla \cdot(V u)-\nu \nabla \cdot(\kappa \nabla u) & =0 \text { in } \Omega \\
u & =0 \text { in } \Gamma_{0} \\
u & =1 \text { in } \Gamma_{1}
\end{aligned}
$$

Discretized using SUPG stabilization in FreeFEM.

The value of the velocity field V is either:

$$
\begin{aligned}
& V(x, y)=\binom{x(1-x)(2 y-1)}{-y(1-y)(2 x-1)} \\
& \text { in 2D and 3D, respectively. }
\end{aligned}
$$

Solution

Solution

$$
\nu=10^{-2}
$$

Solution

Numerical results

Dimension	k	N	n	ν				
				1	10^{-1}	10^{-2}	10^{-3}	10^{-4}
2	1	1,024	$6.3 \cdot 10^{6}$	$23_{(52,875)}$	$20_{(52,872)}$	$19_{(52,759)}$	$20_{(47,497)}$	$21_{(28,235)}$
3	2	4,096	$8.1 \cdot 10^{6}$	$18_{\left(1.8 \cdot 10^{5}\right)}$	$14_{\left(1.8 \cdot 10^{5}\right)}$	$11_{\left(1.6 \cdot 10^{5}\right)}$	$16_{(97,657)}$	$29_{(76,853)}$

2-level Additive Schwarz

Dimension	n	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}
2	$6.3 \cdot 10^{6}$	42	48	88	\dagger	\dagger
3	$8.1 \cdot 10^{6}$	40	38	65	\dagger	\dagger

GAMG

Dimension	n	ν					
2	$6.3 \cdot 10^{6}$	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	
3	$8.1 \cdot 10^{6}$	12	9	19	7	\dagger	
scremereand							

Saddle point systems?

What about systems of the form

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]
$$

Not symmetric positive definite - do not fit in this framework

Saddle point systems

We have the block factorization

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & -\left(C+B A^{-1} B^{T}\right)
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B^{T} \\
0 & I
\end{array}\right]
$$

Saddle point systems

We have the block factorization

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & -\left(C+B A^{-1} B^{T}\right)
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B^{T} \\
0 & I
\end{array}\right]
$$

It's enough to be able to solve with A and $S=C+B A^{-1} B^{T}$.

Saddle point systems

We have the block factorization

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
B A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & -\left(C+B A^{-1} B^{T}\right)
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B^{T} \\
0 & I
\end{array}\right]
$$

It's enough to be able to solve with A and $S=C+B A^{-1} B^{T}$.
If $A \approx D$, a diagonal matrix, then we can apply the ideas earlier to A and S (see [Al Daas, Jolivet, Scott (2022)])

Helmholtz optimal control

$$
\min _{u \in U, z \in Z} \frac{1}{2}\|\mathcal{W}(u)-w\|_{W}^{2}+\frac{\beta}{2}\|z\|_{Z}^{2}
$$

subject to

$$
\begin{aligned}
-\nabla^{2} u-\kappa^{2} u & =\mathcal{F}(z) \text { in } \Omega \\
\partial_{\nu} u & =\mathcal{B}_{1}(z) \text { on } \Gamma_{1} \\
\partial_{\nu} u-i \delta \kappa u & =\mathcal{B}_{2}(z) \text { on } \Gamma_{2} \\
u & =0 \text { on } \Gamma_{3} .
\end{aligned}
$$

See [Kouri, Ridzal, Tuminaro (2021)]

Discretized problem

$$
\left[\begin{array}{ccc}
C & 0 & K^{*} \\
0 & \beta R & L^{*} \\
K & L & 0
\end{array}\right]\left[\begin{array}{l}
u \\
z \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
w \\
0 \\
0
\end{array}\right]
$$

Discretized problem

$$
\left[\begin{array}{ccc}
C & 0 & K^{*} \\
0 & \beta R & L^{*} \\
K & L & 0
\end{array}\right]\left[\begin{array}{l}
u \\
z \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
w \\
0 \\
0
\end{array}\right]
$$

Discretized problem

Discretized problem

Science and
Technology
Facilities Council

Results

2 dimensions, $2^{6} \times 2^{6}$ uniform mesh, $\beta=10^{-4}$.
DD uses 128 subdomains, $\kappa\left(M^{-1} S\right) \leq 100$.

Preconditioner	0	1	ω	4	6
	$54_{(2,653)}$	$64_{(2,724)}$	$63_{(2,729)}$	$62_{(2,773)}$	$66_{(2,781)}$
Kouri et al.	12	10	12	15	15

Conclusions

- We have presented a fully algebraic DD preconditioner for diagonally dominant matrices
- Although we have proved convergence for diagonally dominant matrices, the construction is algebraic and can be applied to any systems
- By breaking down more complex systems into SPD subproblems, this can be applied more widely, e.g., to certain saddle point systems.

References

- AI Daas and Grigori, 'A Class of Efficient Locally Constructed Preconditioners Based on Coarse Spaces' SIMAX (2019)
- Al Daas, Jolivet and Rees, 'Efficient Algebraic Two-Level Schwarz Preconditioner for Sparse Matrices' SISC (2023)
- Jolivet et al., 'HPPDM - high performance unified framework for domain decomposition methods'
https://github.com/hpddm/hpddm

