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Data assimilation: observation + prior info = ???

Weighted combination of observation and prior information (typically from
numerical model)

Areas of recent research interest: engineering design, COVID prediction,
economics, renewable energy sector, ecology, personalised medicine...
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Data assimilation for numerical weather prediction presents
challenges and opportunities

- Very high dimensional systems (109 state variables and 106

observations)

- Extreme time constraints: e.g. 30 minutes for DA component of a
traditional 6 hour forecast cycles, JMA: update forecasts every 10
minutes.

- Noisy data with gaps

+ Data/linear systems possess lots of inherent structure

+ Mature applications: exploit expert knowledge of physics/instruments
when designing new approaches

+ Large amount of data/community models for testing
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DA applied to numerical weather prediction
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Variational DA can be viewed as a minimization problem

Need to solve

min
x∈Rs(N+1)

J(x), x = vec([x0, . . . , xN ]) = (xT0 , . . . , xTN )T

where

J(x) =
1

2
∥x0−xB0 ∥2B−1+

1

2

N∑
i=0

∥yi−Hi (xi )∥2R−1
i

+
1

2

N−1∑
i=0

∥xi+1−Mi (xi )∥2Q−1
i+1

xi ∈ Rs model state at time ti

yi ∈ Rp observation at time ti

Hi new observation operator, yi = Hi (x
t
i ) + ϵi , x

t
i true state,

ϵi ∼ N (0,Ri )

Mi (inexact) forecast model, xi+1 = Mi (xi ) + ϵMi , ϵMi ∼ N (0,Qi )

xB0 = x t0 + ϵB , ϵB ∼ N (0,B)
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Inner loop we solve a SPD linear system

(LTD−1L+HTR−1H)︸ ︷︷ ︸
S

δx = D−1b + LTHTR−1d

D =


B

Q1

. . .

QN

 , L =


I

−M1 I
. . .

. . .

−MN I

 ,

R =


R0

R1

. . .

RN

, H =


H0

H1

. . .

HN

 .
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Saddle point formulation of weak-constraint data
assimilation

Re-write linearised objective function in saddle point formD 0 L
0 R H
L⊤ H⊤ 0

δη
δν
δx

 =

b
d
0

 . (1)

D = blkdiag (B,Q1,Q2, ...,QN) ∈ R(N+1)s×(N+1)s ,

R = blkdiag (R0,R1,R2, ...,RN) ∈ R(N+1)p×(N+1)p,

H = blkdiag
(
H

(l)
0 ,H

(l)
1 ,H

(l)
2 , ...,H

(l)
N

)
∈ R(N+1)s×(N+1)s ,

L =


I

−M
(l)
1 I

−M
(l)
2 I

. . .
. . .

−M
(l)
N I

 . (2)
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Why the saddle point formulation

Saddle point systems well-studied in numerical linear algebra

Standard preconditioning approaches
Eigenvalue bounds - guarantee good performance of MINRES

Reveal structure that is obscured in objective function form

Block-diagonal structure means we can immediately parallelise
multiplication with saddle matrix (typical DA motivation)

Much more varied options for preconditioners than the primal form
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Some preconditioners for saddle point problems

PD =

D̂ R̂

Ŝ

 , PT =

D̂ 0 L

R̂ H

Ŝ

 , PC :=

 D̂ 0 L̂

0 R̂ 0

L̂
T

0 0


S = L⊤D−1L+H⊤R−1H

P−1
D =

D̂
−1

R̂
−1

Ŝ
−1

 ,PT =

D̂
−1

0 −D̂
−1

LŜ
−1

R̂
−1

−R̂HŜ
−1

Ŝ
−1



P−1
C :=

 0 0 L̂
−T

0 R̂
−1

0

L̂
−1

0 −Ŝ
−1

0


S0 = L⊤D−1L
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Bounds on the preconditioned spectrum (block diagonal)

PD :=

D̂

R̂

Ŝ

 ,

λ(D̂−1D) ∈ [λD,ΛD], λ(R̂−1R) ∈ [λR,ΛR], λ(Ŝ−1S) ∈ [δ,∆],

Theorem ([JMT and Pearson 2023a])

The eigenvalues of P−1
D A are real, and satisfy:

λ(P−1
D A) ∈

[
ϕ−

√
ϕ2 + 4Φ∆

2
,
Φ−

√
Φ2 + 4ϕδ

2

]

∪ [ϕ,Φ] ∪

[
ϕ+

√
ϕ2 + 4ϕδ

2
,
Φ+

√
Φ2 + 4Φ∆

2

]
,

where ϕ = min{λD, λR}, Φ = max{ΛD,ΛR}.
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Standard preconditioning neglects observation term of
Schur complement

One popular choice of preconditioner is given by

Ŝ = L̂⊤D−1L̂. (3)

Neglect observation term completely

Approximate L

Ŝ−1 = L̂−1DL̂−⊤

1 What are some good choices for L̂?

2 Is including observation information in Ŝ a good idea:

when L̂ = L?
when L̂ ̸= L?
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Ŝ = L̂⊤D−1L̂. (3)

Neglect observation term completely

Approximate L
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Why do we need to approximate L in a preconditioner?

L =


I

−M
(l)
1 I

−M
(l)
2 I

. . .
. . .

−M
(l)
N I

 .

L−1 =


I

M1,1 I
M1,2 M2,2 I
...

...
. . .

. . .

M1,N M2,N · · · MN,N I


where Mi ,j = M

(l)
i M

(l)
i+1 . . .M

(l)
j .
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Standard approximations to L don’t include model
information

L0 =


I

I
I

. . .

I

 = I(N+1)s

LI =


Is
−Is Is

−Is Is
. . .

. . .

−Is Is


[Fisher et al 2018, Gratton et al 2018]
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Proposed L: contains model info and is parallelisable

Parameter k controls the dimensions of the block diagonals.

Highly parallelisable (block diagonal structure).

k = 1 yields L0.

k = N + 1 yields L.

Expect best performance/parallellisation trade-off for small k .
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Eigenvalues of L−⊤
M L⊤LL−1

M

Theorem

We can write L−⊤
M L⊤LL−1

M = I+ A(M) where the block entries of

A(M) ∈ Rs(N+1)×s(N+1) are defined as follows. For n = 1, . . . ,
⌊
N
k

⌋
,

[A(M)]i,j =


(
∏nk

t=i M
⊤
t )(

∏nk
q=j Mnk−q+j) for (n − 1)k + 1 ≤ i , j ≤ nk ,

−
∏nk

t=j Mnk−t+j for i = nk + 1, (n − 1)k + 1 ≤ j ≤ nk,

−
∏nk

t=i M
⊤
t for j = nk + 1, (n − 1)k + 1 ≤ i ≤ nk,

0 otherwise,

where [A(M)]i ,j denotes the (i , j)th block of A(M).

Theorem

Let L be defined as in (2) and LM as in Lemma 2. For 2 ≤ k ≤ N + 1,
L−⊤
M L⊤LL−1

M has rs unit eigenvalues where r = N + 1− 2
⌊
N
k

⌋
.
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Theoretical conclusions

Using model information we obtain more unit eigenvalues for the
preconditioned L term than using L0.

r is not strictly monotonic - increasing k increases/maintains the
number of unit eigenvalues of the preconditioned system.

Under additional assumptions on the Mi s we can bound the
remaining eigenvalues above

Jemima M. Tabeart (TU/e) Saddle point precond 16 / 38



Lorenz 96 experiments

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + 8 (4)

where we have periodic boundary conditions (x−1 = xs−1 and x0 = xs and
xs+1 = x1). F = 8 gives us chaotic behaviour.

s = 2500, 1250,N = 15

B,Q - truncated spatial (SOAR)

H randomly selected direct/averaged observations

R noisy block structure
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Performance with changing k

Figure: Performance of inexact constraint preconditioner for Lorenz 96 problem
for changing values of k . Dimension of problem is A ∈ R100,000×100,0000.
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Computational cost – matrix-vector products

k Ri Di D̂−1
i Mi/M

⊤
i Ri R−1

block Di D̂−1
i Mi/M

⊤
i

1 22496 44992 22496 42180 10704 10704 21408 10704 20070
3 16688 33376 16688 47978 7536 7536 15072 7536 21666
4 13168 26336 13168 41150 6624 6624 13248 6624 20700
7 11776 23552 11776 41216 6080 6080 12160 6080 21280
10 9520 19040 9520 34510 4816 4816 9632 4816 17458
16 3520 7040 3520 12760 1376 1376 2752 1376 4988

Table: PD for increasing k for Rdiag (left) and Rblock (right).

k Ri Di Mi/M
⊤
i Ri R−1

block Di Mi/M
⊤
i

1 8624 17248 16170 3344 3344 6688 6270
3 6304 12608 18124 2400 2400 4800 6900
4 6064 12128 18950 2336 2336 4672 7300
7 5264 10528 18424 2000 2000 4000 7000
10 5040 10080 18270 1904 1904 3808 6902
16 4384 8768 15892 1648 1648 3296 5974

Table: PI for increasing k for Rdiag (left) and Rblock (right).
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Convergence for a large dimensional example

Rblock RRR R Rblock RRR R
L0 759 822 822 359 275 275

LM , k = 3 433 466 467 244 205 205
LM , k = 4 348 335 336 228 200 200
LM , k = 5 367 354 355 206 182 182

Table: Experiment A: Number of iterations required for convergence of MINRES
with the block diagonal preconditioner PD (left) and PI (right) applied to the
Lorenz 96 problem, using Rblock , RRR , R in combination with L0, LM

(k = 3, 4, 5). Here, A ∈ R1,600,000×1,600,000.
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Conclusions of [JMT and Pearson 2023a]

Better approximations to L improve convergence in terms of iterations

Smaller values of k allow us to reduce/maintain the number of
matrix-vector products with Mi and decrease the number of
matrix-vector products with covariance matrices.

Using a correlated choice of R̂ compared to Rdiag leads to large
reduction in iterations and matrix-vector products.

Will we see improvements when accounting for the observation term in S?
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Accounting for the observation term in Ŝ

Will only work for PD ,PT (recall the Schur complement for P−1
I has

no observation term)

Can also be used within the primal formulation (where we solve a
system of the form Sδx = b)

Start by considering the case L̂ = L and then extend our approach to the
case of approximate L.
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λmin(R) is still important if Ŝ = LTD−1L

If we precondition with the exact first term, we can bound the eigenvalues

Theorem ([JMT et al. 2021])

Let Ŝ−1S = I+D1/2L−THTR−1HL−1D1/2 be the Hessian of the
preconditioned data assimilation problem. Then we can bound the
condition number of the preconditioned system above by:

κ(Ŝ−1S) ≤ 1 +
λLDL
max

λmin(R)
λmax(HHT )

where λLDL
min = λmin(L

−1DL−T ), λLDL
max = λmax(L−1DL−T ).

Preconditioned system is identity plus low rank – smallest eigenvalue
is 1.

How tight/pessimistic is this bound?
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R is still causing us problems

Figure: Eigenvalues of unpreconditioned and preconditioned system, using the
level-1 preconditioner Ŝ−1

0 S

It is possible to end up with a worse condition number than you started
with due to very large eigenvalues!

Can we mitigate the impact of some of these very large eigenvalues in a
computationally efficient way?
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Existing approaches

Limited memory preconditioner approach
[Daužickaitė et al 2021, Fisher et al 2018]

1 Precondition symmetrically with exact first term: P1 = L⊤D−1L

P−1
1 S = I+D1/2L−⊤H⊤R−1HL−1D1/2

2 Estimate k leading terms of UΓU⊤ ≈ D1/2L−⊤H⊤R−1HL−1D1/2

3 P−1
2 = I−UΓ̃U⊤ where Γ̃ii = 1− 1

γi
for i = 1, . . . , k .

Challenges:

We have to sketch this term

Preconditioning with P−1
1 is done via a transformation in the primal

form, but not so straightforward in saddle point form

Restricted to using exact L
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Observation low-rank correction (OLC) approach

Propose a preconditioner of the form

Sr = L⊤D−1L+K⊤
r Kr , (5)

where and Kr = Λ
1/2
r V⊤

r ∈ Rr×s(N+1) defines a rank-r approximation to
H⊤R−1H such that

H⊤R−1H = VrΛrV
⊤
r + ṼΛ̃Ṽ

⊤
.

Here, Λr ∈ Rr×r contains the r leading eigenvalues of H⊤R−1H (with
r < s(N + 1)), and Vr the corresponding eigenvectors.
Properties:

Applied additively rather than multiplicatively – we automatically get
symmetry of the updated preconditioner

No requirement for a square root decomposition of D

We can exploit the block structure of HTR−1H – much cheaper to
obtain eigenvalue/vector information
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Comparison of LMP vs OLC

Both methods:

Preserve the minimum eigenvalue
Increase the number of unit eigenvalues by r .
Can be extended to the case of approximate L
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Applying OLC efficiently

We may apply the inverse operation of the matrix (5) using the
Sherman–Morrison–Woodbury identity via

Ŝ−1 = L̂−1DL̂−⊤
(
Is(N+1) −K⊤

r (Ir +Kr L̂
−1DL̂−⊤K⊤

r )
−1Kr L̂

−1DL̂−⊤
)
.

Retain beneficial properties of Ŝ

Re-use approximations/implementations of L̂
[JMT and Pearson 2023a].

Inverse is small dimension so can be computed explicitly.

Kr also has a block structure.
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Zoom in on largest eigenvalues

Figure: Zoom in on largest eigenvalues. Dashed line represents 23rd eigenvalues
of the first level preconditioned system, r = 22.
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Including low-rank information improves convergence

r 0 5 10 20 30 40 50
OLC 70 55 44 33 28 24 20
LMP 70 40 34 27 22 19 17

PD , OLC 67 65 55 43 37 31 27
PD , LMP 67 37 29 21 17 13 9
PT , OLC 39 34 29 23 20 18 16
PT , LMP 39 22 17 12 10 8 6

Table: Convergence for Lorenz 96 problem with p=100, s=400, N=7 using
D̂ = D, R̂ = R.

Randomised approach performs similarly in terms of iterations and better in terms
of speed.
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Extending OLC/LMP to the case of approximate L:
motivation

Figure: Spectrum of Ŝ−1S for S = LT
MD−1LM for different values of k

Jemima M. Tabeart (TU/e) Saddle point precond 31 / 38



Extending OLC/LMP to the case of approximate L

Theorem

If L̂ ̸= L is given as in [JMT and Pearson 2023a] for k < N + 1 then we
can re-write the first-level preconditioned system as

Ŝ0 = Is(N+1) +D1/2L̂−T (HTR−1H+ C)L̂−1D1/2

where

[C]ij =


MT

i Q−1
i Mi if i = j and k⌊ i

k
⌋ = i , 1 ≤ i , j ≤ N − 1

−Q−1
j Mj if k⌊ j

k
⌋ = j and i = j + 1, 1 ≤ j ≤ N

−MT
i Q

−1
i if k⌊ i

k
⌋ = i and j = i + 1, 1 ≤ i ≤ N

0 otherwise

Each non-zero block of C has s positive eigenvalues and s negative
eigenvalues
rank(C) = 2s⌊N−1

k ⌋ for k ≥ 2
We can prove (pessimistic) upper bounds on the number of
observations required for C+HTR−1H to be symmetric indefinite
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Extending LMP/OLC

Apply both methods to C+HTR−1H.

LMP: for k = N + 1 the second term is SPSD, so we can sketch this
using e.g. Nyström and then add 1 to the eigenvalues. Here, we want
to sketch the full first-level preconditioned term (as the second term
may be indefinite and this is hard to determine a priori)

¨: C+HTR−1H has a block diagonal structure - distinguish between
blocks

[C]i,j = 0 compute/approximate eigendecomposition of
HTR−1H ∈ Rs×s

[C]i,j ̸= 0 compute/approximate eigendecomposition of
[HTR−1H+ C]i :i+1,j+j+1 ∈ R2s×2s

Properties:

r additional unit eigenvalues when using second-level preconditioning

Small eigenvalues unchanged (smaller than 1) unless r very large

Jemima M. Tabeart (TU/e) Saddle point precond 33 / 38



Numerical experiments
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Improvement to iterations - A ∈ R7200×7200

PD r 0 5 10 20 30 40 50

OLC 1 113 93 85 81 79 77 77
3 105 97 83 73 69 67 65
4 85 79 67 55 49 47 45

N + 1 = 8 67 65 55 43 37 31 27

LMP 1 113 79 71 65 63 63 63
3 105 69 61 55 53 51 49
4 85 52 45 37 35 33 33

N + 1 = 8 67 37 29 21 17 13 9

PT r 0 5 10 20 30 40 50

OLC 1 70 58 54 50 49 48 47
3 64 56 50 44 42 41 39
4 52 44 39 32 29 27 26

N + 1 = 8 39 34 29 23 20 18 16

LMP 1 70 50 44 40 39 39 38
3 64 45 39 34 33 31 31
4 52 33 27 23 21 20 19

N + 1 = 8 39 22 17 12 10 8 6
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Experimental results

Still benefit to including the observation term in the Schur
complement in the case of approximate L

Including small amounts of observation information results in fewer
iterations than increasing k with r = 0 (and might be more
computationally affordable) – this could be problem specific

For same choice of r LMP leads to bigger reduction in iterations

Potentially can afford to use larger r for OLC than LMP
OLC can be used in the case where D1/2 unavailable/with MINRES for
PD – not the case for LMP
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Conclusions

New preconditioners for the saddle point formulation of
weak-constraint 4D-Var

Including model information in the preconditioner can reduce
iterations, careful parameter choice ensures control over
computational cost in terms of matrix-vector products.

Low-rank correction methods allow us to include some observation
information in the Schur complement term

Presented a new method (OLC) and extended this and LMP to the
case of an approximate first term
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Outlook and related work

Alternative choices for L̂:
Replace Mi with average value M̂ and exploit Toeplitz structure via
solution of matrix equations [Palitta and JMT 2023]
Similar to above but using a block-circulant preconditioner L.

Other preconditioners that avoid the application of D̂−1 but allow
observation information in the Schur complement term

References: Saddle point preconditioners for weak-constraint 4D-Var
J. M. Tabeart and J. W. Pearson
https://arXiv:2105.06975
Stein-based Preconditioners for Weak-constraint 4D-Var
D. Palitta and J. M. Tabeart
https://doi.org/10.1016/j.jcp.2023.112068
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