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Three Lectures

1. IPMs: Motivation and Linear Algebra

2. Inexact Newton Directions,
Conjugate Gradient and Preconditioners

3. Example Applications:
Design of Efficient Preconditioners
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Lecture 1

IPMs: Motivation & Linear Algebra
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Outline

• IPM Motivation

– Lagrangian duality, logarithmic barrier
– first order optimality conditions, Newton method

• Polynomial Complexity of IPM

– primal-dual framework
– following the central path
– key ideas in the proof of polynomial complexity

• Linear Algebra in IPM

– from LP, via QP to NLP
– definite, indefinite and quasidefinite systems
– Cholesky factorization
– exploiting sparsity
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Primal-Dual Pair of Linear Programs

Primal Dual

min cTx max bTy
s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Lagrangian

L(x, y) = cTx− yT (Ax− b)− sTx.

Optimality Conditions

Ax = b,

ATy + s = c,
XSe = 0, ( i.e., xj · sj = 0 ∀j),
(x, s) ≥ 0,

X=diag{x1, · · · , xn}, S=diag{s1, · · · , sn}, e=(1, · · · , 1)∈Rn.
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Logarithmic barrier

− ln xj

“replaces” the inequality

xj ≥ 0 .

x

−ln x

1

Observe that

min e−
∑n

j=1 ln xj ⇐⇒ max
n
∏

j=1

xj

The minimization of−
∑n

j=1 ln xj is equivalent to the maximization
of the product of distances from all hyperplanes defining the positive
orthant: it prevents all xj from approaching zero.
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Logarithmic barrier

Replace the primal LP

min cTx
s.t. Ax = b,

x ≥ 0,

with the primal barrier program

min cTx− µ
n
∑

j=1
ln xj

s.t. Ax = b.

Lagrangian: L(x, y, µ) = cTx− yT (Ax− b)− µ
n
∑

j=1

lnxj.
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Conditions for a stationary point of the Lagrangian

∇xL(x, y, µ) = c− ATy − µX−1e = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−1 = diag{x−1
1 , x−1

2 , · · · , x−1
n }.

Let us denote

s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,

XSe = µe,
(x, s) > 0.
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The pronunciation of Greek letter µ [mi]

Robert De Niro, Taxi Driver (1976)
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Central Trajectory

The first order optimality conditions for the barrier problem

Ax = b,
ATy + s = c,

XSe = µe,
(x, s) ≥ 0

approximate the first order optimality conditions for the LP

Ax = b,
ATy + s = c,

XSe = 0,
(x, s) ≥ 0

more and more closely as µ goes to zero.

Copenhagen, 15 November 2023 10



J. Gondzio L1: Motivation and Linear Algebra of IPMs

Central Trajectory

Parameter µ controls the distance to optimality.

cTx−bTy = cTx−xTATy = xT(c−ATy) = xTs = nµ.

Analytic centre (µ-centre): a (unique) point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies FOC.

The path
{(x(µ), y(µ), s(µ)) : µ > 0}

is called the primal-dual central trajectory.
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Newton Method
is used to find a stationary point of the barrier problem.

Recall how to use Newton Method to find a root of a nonlinear
equation

f (x) = 0.

A tangent line

z − f (xk) = ∇f (xk) · (x− xk)

is a local approximation of the graph of the function f (x).
Substituting z = 0 defines a new point

xk+1 = xk − (∇f (xk))−1f (xk).
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Newton Method

x

f(x)

xk xk+1 xk+2

f(x     )
k+2

f(x     )
k+1

f(x  )
k

k

z

k kz-f(x  ) =    f(x  )(x-x  )

xk+1 = xk − (∇f (xk))−1f (xk).
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

f (x, y, s) = 0,

where f : R2n+m 7→ R2n+m is a mapping defined as follows:

f (x, y, s) =





Ax − b
ATy + s − c

XSe − µe



 .

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
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Newton Method (cont’d)

Note that

∇f (x, y, s) =





A 0 0
0 AT I
S 0 X



 .

Thus, for a given point (x, y, s) we find the Newton direction
(∆x,∆y,∆s) by solving the system of linear equations:





A 0 0
0 AT I
S 0 X



 ·
[

∆x
∆y
∆s

]

=





b− Ax
c− ATy − s
µe−XSe



 .
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Interior-Point Framework
The logarithmic barrier

− ln xj

“replaces” the inequality xj ≥ 0.

We derive the first order optimality conditions for the primal
barrier problem:

Ax = b,
ATy + s = c,

XSe = µe,

and apply Newton method to solve this system of (nonlinear)
equations.

Actually, we fix the barrier parameter µ and make only one (damped)
Newton step towards the solution of FOC. We do not solve the cur-
rent FOC exactly. Instead, we immediately reduce the barrier pa-
rameter µ (to ensure progress towards optimality) and repeat the
process.
Copenhagen, 15 November 2023 16
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Interior Point Algorithm
Initialize

k = 0 (x0, y0, s0) ∈ F0

µ0 =
1
n · (x0)Ts0 α0 = 0.9995

Repeat until optimality

k = k + 1
µk = σµk−1, where σ ∈ (0, 1)
∆ = (∆x,∆y,∆s) = Newton direction towards µ-centre

Ratio test:
αP := max {α > 0 : x + α∆x ≥ 0},
αD := max {α > 0 : s + α∆s ≥ 0}.

Make step:

xk+1 = xk + α0αP∆x,
yk+1 = yk + α0αD∆y,
sk+1 = sk + α0αD∆s.
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Central Path Neighbourhood

Assume a primal-dual strictly feasible solution (x, y, s) ∈ F0 lying
in a neighbourhood of the central path is given; namely (x, y, s)
satisfies:

Ax = b,
ATy + s = c,

XSe ≈ µe.

We define a θ-neighbourhood of the central path N2(θ), a set of
primal-dual strictly feasible solutions (x, y, s) ∈ F0 that satisfy:

‖XSe− µe‖ ≤ θµ,

where θ ∈ (0, 1) and the barrier µ satisfies:

xTs = nµ.

Hence N2(θ) = {(x, y, s) ∈ F0 | ‖XSe− µe‖ ≤ θµ}.
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Central Path Neighbourhood

2
θN  (   ) neighbourhoodof the central path
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Progress towards optimality

Assume a primal-dual strictly feasible solution (x, y, s) ∈ N2(θ) for
some θ ∈ (0, 1) is given.

Interior point algorithm tries to move from this point to another
one that also belongs to the θ-neighbourhood of the central path
but corresponds to a smaller µ. The required reduction of µ is
small:

µk+1 = σµk, where σ = 1− β/
√
n,

for some β ∈ (0, 1).

This is a short-step method:
It makes short steps to optimality.
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Progress towards optimality

Given a new µ-centre, interior point algorithm computes Newton
direction:





A 0 0
0 AT I
S 0 X



 ·
[

∆x
∆y
∆s

]

=

[

0
0

σµe−XSe

]

,

and makes step in this direction.

Magic numbers:

θ = 0.1 and β = 0.1.

θ controls the proximity to the central path;
β controls the progress to optimality.
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How to prove the O(√n) complexity result

One has to prove the following:

• full step in Newton direction is feasible;

• the new iterate

(xk+1, yk+1, sk+1)=(xk, yk, sk)+(∆xk,∆yk,∆sk)

belongs to the θ-neighbourhood of the new µ-centre

(with µk+1 = σµk);

• duality gap is reduced 1− β/
√
n times.
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O(√n) complexity result

Note that since at one iteration duality gap is reduced 1 − β/
√
n

times, after
√
n iterations the reduction achieves:

(1− β/
√
n)

√
n ≈ e−β.

After C · √n iterations, the reduction is e−Cβ. For sufficiently
large constant C the reduction can thus be arbitrarily large (i.e. the
duality gap can become arbitrarily small).

Hence this algorithm has complexity O(
√
n).

This should be understood as follows:

“after the number of iterations proportional to
√
n

the algorithm solves the problem”.
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Reading about IPMs
S. Wright
Primal-Dual Interior-Point Methods, SIAM Philadelphia, 1997.

Gondzio
Interior point methods 25 years later,
European J. of Operational Research 218 (2012) 587–601.
http://www.maths.ed.ac.uk/~gondzio/reports/ipmXXV.html

Gondzio and Grothey
Direct solution of linear systems of size 109 arising in optimiza-
tion with interior point methods, in: Parallel Processing and Ap-
plied Mathematics PPAM 2005, R. Wyrzykowski, J. Dongarra,
N. Meyer and J. Wasniewski (eds.), Lecture Notes in Computer
Science, 3911, Springer-Verlag, Berlin, 2006, pp 513–525.

OOPS: Object-Oriented Parallel Solver

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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Linear Algebra in IPM (Newton Directions)

LP





A 0 0

0 AT I
S 0 X





[

∆x
∆y
∆s

]

=

[

ξp
ξd
ξµ

]

,

QP





A 0 0
−Q AT I
S 0 X





[

∆x
∆y
∆s

]

=

[

ξp
ξd
ξµ

]

,

NLP





A(x) 0 I
−Q(x, y) A(x)T 0

0 Z Y





[

∆x
∆y
∆z

]

=

[

ξp
ξd
ξµ

]

.
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Take QP case for example:

Newton direction




A 0 0

−Q AT I
S 0 X





[

∆x
∆y
∆s

]

=

[

ξp
ξd
ξµ

]

,

where
ξp = b− Ax,

ξd = c− ATy − s+Qx,
ξµ = µe−XSe.

Eliminate ∆s to get the Augmented System
[

−Q− Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.

LP case corresponds to Q = 0.
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Augmented System vs Normal Equations

Augmented system in QP

[

−Q− Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.

Eliminate ∆x from the first equation and get normal equations

(A(Q + Θ−1)−1AT )∆y = g.

One can use normal equations in LP, but not in QP. Normal equa-
tions in QP may become almost completely dense even for sparse
matrices A and Q. Thus, in QP, usually the indefinite augmented
system form is used.
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KKT systems in IPMs for LP, QP and NLP

LP

[

Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

QP

[

Q + Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

NLP

[

Q(x, y) + Θ−1
P A(x)T

A(x) −ΘD

] [

∆x
∆y

]

=

[

f
d

]

Matrices Θ, ΘP , ΘD are very ill-conditioned.
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Cholesky factorization

Compute a decomposition

LDLT = AΘAT .

where:
L is a lower triangular matrix; and
D is a diagonal matrix.

Cholesky factorization is simply the Gaussian Elimination
process that exploits two properties of the matrix:

• symmetry;

• positive definiteness.
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Definite & Indefinite Systems

IPMs:

For indefinite augmented system
[

−Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

r
h

]

.

one needs to use some special tricks.

For positive definite normal equations

(AΘAT )∆y = g.

one can compute the Cholesky factorization.
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Major Cholesky

Andre-Louis Cholesky (1875-1918)
Major of French Army,
descendant from the Cholewski family of Polish imigrants.

Read: M. A. Saunders, Major Cholesky would feel proud,
ORSA Journal on Computing, vol 6 (1994) No 1, pp 23–27.
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Symmetric Factorization

Two step solution method:

• factorization to LDLT form,

• backsolve to compute direction ∆y.

A symmetric nonsingular matrix H is factorizable if there exists
a diagonal matrix D and unit lower triangular matrix L such that
H = LDLT .

A symmetric matrix H is strongly factorizable if for any per-
mutation matrix P a factorization PHPT = LDLT exists.

The general symmetric indefinite matrix is not factorizable.

Copenhagen, 15 November 2023 32
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Factoring Indefinite Matrix

Two options are possible:

1. Replace diagonal matrix D with a block-diagonal one and allow
2× 2 (indefinite) pivots

[

0 a
a 0

]

and

[

0 a
a d

]

.

Hence obtain a decomp. H = LDLT with block-diagonal D.

2. Regularize indefinite matrix to produce a quasidefinite matrix

K =

[

−E AT

A F

]

,

where
E ∈ Rn×n is positive definite,
F ∈ Rm×m is positive definite, and
A ∈ Rm×n has full row rank.
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Quasidefinite (QDF) Matrices

Symmetric matrix is called quasidefinite if

K =

[

−E AT

A F

]

,

where E ∈ Rn×n and
F ∈ Rm×m are positive definite, and
A ∈ Rm×n has full row rank.

Vanderbei (SIOPT, 1995, pp. 100–113) proved that QDF
matrices are strongly factorizable. For any quasidefinite matrix
there exists a Cholesky-like factorization

K = LDLT ,

where
D is diagonal but not positive definite:
n negative pivots; and m positive pivots.
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From Indefinite to Quasidefinite

Indefinite matrix

H =

[

−Q− Θ−1 AT

A 0

]

.

in IPMs can be converted to a quasidefinite one.
Regularize indefinite matrix to produce a quasi-definite matrix.
Use dynamic regularization

H̄ =

[

−Q− Θ−1 AT

A 0

]

+

[

−Rp 0
0 Rd

]

,

where Rp ∈ Rn×n and Rd ∈ Rm×m are the primal and dual regu-
larizations. For any quasidefinite matrix there exists a Cholesky-like
factorization

H̄ = LDLT ,

where D is diagonal but not positive definite:
n negative pivots and m positive pivots.
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Large Problems are Sparse

Suppose a large LP is solved: m,n ∼ 106 or larger.
Can all variables be linked at the same time?
No, usually only a subset of them is linked.

There are usually only several nonzeros per row in an LP.
Large problems are almost always sparse.
Exploiting sparsity in computations leads to huge savings.
Exploiting sparsity means mainly avoiding doing useless computa-
tions: the computations for which the result is known, as for example
multiplications with zero.
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General Sparse Systems

Single step in Gaussian Elimination

A =

[

p vT

u A1

]

produces the following Schur complement

A1 − p−1uvT .

Markowitz Pivot Choice

Let ri and ci, i = 1, 2, ..., n be numbers of nonzero entries in row
and column i, respectively. The elimination of the pivot aij needs

fij = (ri − 1)(cj − 1)

flops to be made. This step creates at most fij new nonzero entries
in the Schur complement.
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General Sparse Systems

The effect of pivot elimination on the sparsity pattern
1 2 3 4 5 6 7 8

1 p x x x x
2 x x x x
3 x x x x
4 x x x
5 x x x
6 x x
7 x x x
8 x x x x

pivot : p
nonzero : x

1 2 3 4 5 6 7 8

1 p x x x x
2 x x x x
3 x x x f f f f
4 x x x
5 x f f x f f
6 x x
7 x x x
8 x f f f f

pivot : p
nonzero : x
fill− in : f
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Markowitz Pivot Choice: Example

Markowitz: Choose the pivot with mini,j fij.

1 2 3 4 5 6 7 8

1 x x x x x
2 x x x x
3 x x x x
4 x x x
5 x x x
6 p x
7 x x x
8 x x x x

1 2 3 4 5 6 7 8

1 x x x f x
2 x x x x
3 x x x x
4 x x x f
5 x x x
6 p x
7 x x x
8 x x x x
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Minimum Degree Ordering (MDO)

In symmetric positive definite case:
pivots are chosen from the diagonal and ri = ci
hence choose the pivot with mini ri

Minimum degree ordering:
choose an element with the minimum number of nonzeros in a row,

that is, choose a node with the minimum number of neighbours
(a node with the minimum degree)
in a graph related to sparsity pattern of the matrix.
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Minimum Degree Ordering (MDO)

Sparse Matrix Pivot h11 Pivot h22

H =















x x x x
x x

x x x
x x x
x x x

x x x





























p x x x
x x

x x f f x
x f x f x
x x f f x

x x x





























x x x x
p x

x x x
x x x
x x x

x x x















Minimum degree ordering:
choose a diagonal element corresponding to a row with theminimum
number of nonzeros.
Permute rows and columns of H accordingly.

MDO is simply the symmetric version of Markowitz pivot rule.
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Nested Dissection:
5

6

1

4

8

9

10
3

2 7

11

Original Matrix Reordered Matrix

1 2 3 4 5 6 7 8 91011
1 x x x x
2 x x x x x
3 x x x x
4 x x x x x x
5 x x x x x
6 x x x x x
7 x x x x
8 x x x x x
9 x x x x
10 x x x x x x
11 x x x x x

1 2 3 5 6 8 91011 4 7
1 x x x x
2 x x x x x
3 x x x x
5 x x x x x
6 x x x x x
8 x x x x x
9 x x x x
10 x x x x x x
11 x x x x x
4 x x x x x x
7 x x x x
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Conclusions:

Interior Point Methods

→ are well-suited to large scale optimization

Direct Methods of Linear Algebra

→ are able to exploit sparsity very well

Use IPMs in your research!
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Implementation of IPMs

Andersen, Gondzio, Mészáros and Xu
Implementation of IPMs for large scale LP,
in: Interior Point Methods in Mathematical Programming,
T. Terlaky (ed.), Kluwer Academic Publishers, 1996, pp. 189–252.

Altman and Gondzio
Regularized symmetric indefinite systems in interior point methods
for linear and quadratic optimization, Optimization Methods and
Software, 11-12 (1999), pp 275–302.

Survey on IPMs (easy reading)

Gondzio
Interior point methods 25 years later,
European J. of Operational Research 218 (2012) 587–601.
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Lecture 2

Inexact Newton Directions,

Conjugate Gradient and Preconditioners
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Outline

• Computational Challenges

– ill-conditioned linear systems
– prohibitively expensive direct method
– access to A as operator only

• Inexact Newton Directions

– theory: how much of inexactness is allowed?
– practice: iterative methods

• Inexact2 IPM

• Conjugate Gradient algorithm

• Preconditioners

– ideal preconditioner
– general preconditioners in IPMs for LP/QP
– splitting preconditioner (back to simplex?)
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Complementarity xj · sj = 0 ∀j = 1, 2, ..., n.

Simplex Method makes a guess of optimal partition:

For basic variables, sB = 0 and

(xB)j · (sB)j = 0 ∀j ∈ B.
For non-basic variables, xN = 0 hence

(xN )j · (sN )j = 0 ∀j ∈ N .

Interior Point Method uses ε-mathematics:

Replace xj · sj = 0 ∀j = 1, 2, ..., n
by xj · sj = µ ∀j = 1, 2, ..., n.

Force convergence µ → 0.
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Optimality Conditions Newton Direction

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.





A 0 0

0 AT I
S 0 X





[

∆x
∆y
∆s

]

=

[

ξp
ξd
ξµ

]

.

Eliminate ∆s to get Augmented System, then

eliminate ∆x to get Normal Equations (Schur complement)

Augmented System Normal Equations
[

Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

(AΘAT )∆y=g

Ill-conditioned scaling matrix Θ = XS−1.

For “basic” variables: Θj = xj/sj → ∞ Θ−1
j → 0;

For “non-basic” variables: Θj = xj/sj → 0 Θ−1
j → ∞.
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From LP via QP to NLP

LP

[

Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

QP

[

Q + Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

NLP

[

Q(x, y) + Θ−1
P A(x)T

A(x) −ΘD

] [

∆x
∆y

]

=

[

f
d

]

Matrix Θ poses a numerical challenge!
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Inefficient Direct Approach

Cholesky factors get sometimes hopelessly dense.
QAP (Quadratic Assignment Problems).

Problem Dimensions
rows columns nonzeros

qap12 3192 8856 38304
qap15 6330 22275 94950

Problem Normal Equations Augmented System
nz(AAt) nz(LLt) Flops nz(A) nz(LLt) Flops

qap12 74592 2135388 2.38e+9 38304 1969957 2.05e+9
qap15 186075 8191638 1.79e+10 94950 7374972 1.52e+10
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Constraints accessed only as “Operators”

There exist applications where constraint matrix A is very large,
possibly dense and too large to store. However, operations with A
such as y := Ax and z := ATy can be executed very efficiently.

In many signal or image processing applications the constraint ma-
trix A has the form A = RW , where

• R is a low-rank randomised sensing matrix

• W is a basis over which the signal has a sparse representation
(columns of W form this basis, for example wavelet basis)

• Operations y := Ax and z := ATy might involve fast trans-
forms, such as Radon, FFT, etc.

Factorization (direct method) is not an option.
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Iterative Methods Needed

Normal Equations or Augmented System:

• NE is positive definite: can use conjugate gradients;

• AS is indefinite: can use BiCGSTAB, GMRES, QMR;

Augmented System Normal Equations
[

Q + Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

(A(Q + Θ−1)−1AT )∆y=g

Ill-conditioned scaling matrix Θ = XS−1.

For “basic” variables: Θj = xj/sj → ∞ Θ−1
j → 0;

For “non-basic” variables: Θj = xj/sj → 0 Θ−1
j → ∞.
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Main Tool: Inexact Newton Method

Replace an exact Newton direction

∇2f (x)∆x = −∇f (x)

with an inexact one:

∇2f (x)∆x = −∇f (x) + r,

where the residual r is small: ‖r‖ ≤ η‖∇f (x)‖, η ∈ (0, 1).

The NLP community usually writes it as:

‖∇2f (x)∆x +∇f (x)‖2 ≤ η‖∇f (x)‖2, η ∈ (0, 1).

Bellavia,
Inexact Interior Point Method, JOTA 96 (1998) 109–121.

Dembo, Eisenstat & Steihaug,
Inexact Newton Methods, SIAM J. on Numerical Analysis 19 (1982) 400–408.
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Theorem: Suppose the feasible IPM for QP is used.

If the method operates in the small neighbourhood

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}
and uses the inexact Newton direction with η = 0.3, then it con-
verges in at most

K = O(
√

n ln(1/ǫ)) iterations.

If the method operates in the symmetric neighbourhood

NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}
and uses the inexact Newton direction with η = 0.05, then it
converges in at most

K = O(n ln(1/ǫ)) iterations.

Gondzio, Convergence Analysis of an Inexact Feasible IPM for Convex Quadratic Programming,
SIAM Journal on Optimization 23 (2013) No 3, pp. 1510–1527.
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Inexact2 IPM

Standard Inexact Newton Method

∇2f (x)∆x = −∇f (x) + r,

where the residual r is small: ‖r‖ ≤ η‖∇f (x)‖, η ∈ (0, 1)
is disappointingly conservative when applied in IPMs!

Newton direction (∆x,∆y,∆s) comes from the system of linear
equations:





A 0 0
0 AT I
S 0 X



 ·
[

∆x
∆y
∆s

]

=

[

ξP
ξD
ξµ

]

=





b− Ax
c− ATy − s
σµe−XSe



 .

Full step in Newton direction (α = 1) would immediately reach
primal feasibility and dual feasibility.
In practice such steps rarely happen.
Why should we waste time on computing accurate directions?
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Intriguing observation
What happens at a particular IPM iteration?

The accuracy required from the inner solver does not change the
quality of Newton direction!

Stop inner solver as soon as the stagnation occurs.
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Inexact2 IPM

Accept the direction produced by the inner solver as soon as

max
j

∣

∣

∣

∆xkj

xkj

∣

∣

∣
≤ M, max

j

∣

∣

∣

∆skj

skj

∣

∣

∣
≤ M

and
‖ξk+1P ‖ ≤ ηk‖ξkP‖, ‖ξk+1D ‖ ≤ ηk‖ξkD‖,

where ηk ≥ 1− αk.

• Implemented with CG and MINRES;

• Prevents IPM from “over-solving” of the linear systems
→ 70%-90% reduction of the number of Krylov iterations;

• Worst-case complexity drops from O(n) to O(n2).

F. Zanetti and J. Gondzio,
A new stopping criterion for Krylov solvers applied in interior point methods,
SIAM Journal on Scientific Computing 45 (2023) No 2, pp A703–A728.
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Inexact2 IPM
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Conjugate Gradient Algorithm
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Conjugate Gradient Method

Let H ∈ Rn×n be a symmetric positive definite matrix.

Consider a linear equation

Hx = b.

Consider an unconstrained quadratic minimization problem

min
x

f (x) :=
1

2
xTHx− bTx

and observe that

∇f (x) = Hx− b = 0

is its necessary and sufficient optimality condition.
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Conjugate Directions

Let H ∈ Rn×n be a symmetric positive definite matrix.
Use it to define the scalar product

〈u, v〉H = uTHv.

Scalar product induces orthogonality (conjugacy):
u ⊥H v iff 〈u, v〉H = 0 that is uTHv = 0.
We say that u and v are H-orthogonal.

Scalar product induces the norm:

‖u‖2H = 〈u, u〉H .

Conjugate gradients use H-orthogonality to explore the space.
Two vectors di and dj are H-orthogonal, or conjugate, if

dTi Hdj = 0.
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Conjugate Directions
Solving equation with a symmetric positive definite matrix

Hx = b.

Define the error at iteration i: ei = xi − x̂,
and the residual at iteration i: ri = b−Hxi = −Hei.

CG Algorithm:
d0 = r0 = b−Hx0

αi =
rTi ri

dTi Hdi
xi+1 = xi + αidi
ri+1 = ri − αiHdi

βi =
rTi+1ri+1

rTi ri
di+1 = ri+1 + βi+1di
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Properties
Residuals are orthogonal to each other:

rTi rj = 0 ∀ 0 ≤ i < j.

Directions are H-orthogonal (conjugate) to each other:

dTi Hdj = 0 ∀ 0 ≤ i < j.

CG makes step from xi to xi+1 = xi + αdi;
it chooses α so as to minimize f along direction di.
The new error ei+1 is H-orthogonal to di. Indeed:

d

dα
f (xi+1) = 0

∇f (xi+1)
T d

dα
xi+1 = 0

−rTi+1di = 0

eTi+1Hdi = 0.
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Krylov subspace

Define the Krylov subspace Kk:

Kk := span(r0, Hr0, H
2r0, . . . , H

k−1r0)

for k ≥ 1, where r0 is the initial residual: r0 = b−Hx0.

The k-th iterate xk of CG minimizes

f (x) :=
1

2
xTHx− bTx

over x0 +Kk.

Observe that if f (x̃) is the minimal value (in Rn) then

∇f (x̃) = Hx̃− b = 0

and hence x̃ = x∗.
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Minimization Property

Lemma: Let S ⊂ Rn. If xk minimizes f over S then xk also
minimizes ‖x− x∗‖H = ‖r‖H−1 over S.

Proof: Observe that, since H is symmetric and Hx∗ = b, we have

‖x− x∗‖2H = (x− x∗)TH(x− x∗) = 2f (x) + (x∗)THx∗.

Since (x∗)THx∗ is independent of x, minimizing f is equivalent to
minimizing ‖x− x∗‖2H and hence to minimizing ‖x− x∗‖H .

Since e = x− x∗ we also have

‖e‖2H = eTHe = (H(x− x∗))TH−1(H(x− x∗)) = ‖b−Hx‖2
H−1

and hence the H-norm of the error is also the H−1-norm of the
residual.
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Convergence of CG Algorithm
Let κ be the condition number of H

κ =
λmax

λmin
,

where λmax and λmin are the largest and the smallest eigenvalues
of H , respectively. Recall that λmax ≥ λmin > 0.
After k iterations of CG, the error satisfies

‖ek‖ ≤ 2

(√
κ− 1√
κ + 1

)k

‖e0‖.

Usual behaviour of CG algorithm:

Fast convergence if κ is reasonably small, say, κ = 102 or κ = 104.
Slow convergence when κ is large, say, κ = 108 or κ = 1012.
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Preconditioning
Pre- and post-multiply H (to preserve its symmetry) with a ma-
trix E−1 such that the condition number of the preconditioned
matrix

H̃ = E−1HE−T ,

is small.
Instead of solving equation

Hx = b,

solve the preconditioned equation

(E−1HE−T )(ETx) = E−1b.

If κ(H̃) is small, the CG method applied to preconditioned equation
will converge fast.
Preconditioner P = EET . The matrices

P−1H = E−TE−1H and E−1HE−T .

are similar.
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Ideal Preconditioner

The Preconditioner P = EET should:

• be easy to compute
(significantly less expensive than Cholesky factor of H)

• be easy to invert

• produce good spectral properties of E−1HE−T (that is P−1H):

either have few distinct eigenvalues;

or have all eigenvalues in a small cluster: λmin ≤ λ ≤ λmax.
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Preconditioned CG Algorithm
Apply CG Algorithm to the preconditioned system:

(E−1HE−T )(ETx) = E−1b.
PCG Algorithm:

r0 = b−Hx0
d0 = P−1r0

αi =
rTi P

−1ri

dTi Hdi
xi+1 = xi + αidi
ri+1 = ri − αiHdi

βi =
rTi+1P

−1ri+1

rTi P
−1ri

di+1 = P−1ri+1 + βi+1di

where P = EET .
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Preconditioner
Observations:
The matrix H is used only in a matrix-vector multiplication:

y = Hd.

The preconditioner P = EET is used only to compute

z = P−1r,

that is to solve equation

Pz = r.

Preconditioner should be:

• easy to compute;

• easy to invert;

• a “good” approximation of H .
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Preconditioning
What makes a good preconditioner?
We would like

E−1HE−T ≈ I,

or, more generally,

κ(E−1HE−T ) ≈ 1.

Straightforward mathematical interpretation:
keep

‖E−1HE−T − I‖
small (or keep

‖H − EET‖
small).

Different properties of the preconditioned matrix may be desireable.
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Good Preconditioner
Minimize the number of distinct eigenvalues

E−1HE−T =















λ1
λ1

λ2
λ2

λ2
λ2















.

CG will converge in 2 iterations!
Cluster the eigenvalues

λmin ≤ λi ≤ λmax, ∀i,
and keep λmax/λmin small; or
make sure eigenvalues stay in a few tight clusters:

∀i ∃k such that λkmin ≤ λi ≤ λkmax,

and keep all λkmax/λ
k
min small.
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Incomplete Cholesky Preconditioner

Incomplete Cholesky: H ≈ LLT

“drop small entries on the fly”

• dynamic dropping excludes the use of static data structures
−→ significant increase of the factorization cost

Structural dropping

• accept nonzeros only at positions of nonzeros in H ;

• accept level-one fill-in,

• accept level-k fill-in,

• accept up to k nonzero fill-in per column, etc.

Kershaw, Journal of Computational Physics 26(1978) 43-65.
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Example Preconditioners in IPMs
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LP & QP Problems

min cTx + 1
2 x

TQx

s.t. Ax = b,

x ≥ 0,

where A ∈ Rm×n has full row rank

and Q ∈ Rn×n is symmetric positive semidefinite.

m and n may be large.

Assumption: A and Q are “operators” A · u, AT· v, Q · u

Expectation: Low complexity of these operations
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Augmented System or Normal Equations
[

Q + Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

(A(Q + Θ−1)−1AT )∆y=g

Advantages of Augmented System

Oliveira, PhD Thesis, Rice University, 1997

Oliveira & Sorensen, A New Class of Preconditioners for Large-
Scale Linear Systems from Interior Point Methods for Linear Pro-
gramming, Linear Algebra and its Applications 394 (2005) 1-24.

→ It is better to precondition AS.

O, OS show that all preconditioners for the NE have an
equivalent for the AS while the opposite is not true.

After all, NE is equivalent to a restricted order of pivoting in AS.
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Augmented System

[

Q AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

.

• Optimization: KKT System

• PDE: Saddle Point Problem

Benzi, Golub & Liesen,
“Numerical Solution of Saddle Point Problems”,
Acta Numerica 14 (2005) 1-137.

Major difference in tackling the problem:

• Optimization: Structure of Q and A is not known

• PDE: Expolit features of Q and A to design preconditioners
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Indefinite Matrix H

→ Indefinite Preconditioner P

Rozlozńık & Simoncini, SIMAX 24 (2002) 368-391.

RS consider the preconditioner P which guarantees that all eigen-
values of the preconditioned matrix P−1H are positive and bounded
away from zero.

Although P−1H is indefinite

• the CG can be applied to this problem,

• the asymptotic rate of convergence of CG is approximately the
same as that obtained for a positive definite matrix with the
same eigenvalues as the original system.
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Indefinite Block Preconditioner

KKT matrix and its preconditioner

H =

[

Q AT

A 0

]

and P =

[

G AT

A 0

]

,

Q ∈ Rn×n is positive definite, and A ∈ Rm×n has full row rank.

G ∈ Rn×n is a positive definite approximation of Q.

Keller, Gould & Wathen, SIMAX 21 (2000) 1300-1317.

Theorem. Assume that A has rank m (m < n).
Then, P−1H has at least 2m unit eigenvalues, and the other
eigenvalues are positive and satisfy

λmin(G
−1Q) ≤ λ ≤ λmax(G

−1Q).
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How to choose G?

Bergamaschi, G. & Zilli, COAP 28 (2004) 149-171.
Augmented system in QP, NLP

H =

[

Q + Θ−1 AT

A 0

]

.

Drop off-diagonal elements from Q:

Replace Q + Θ−1 by D = diag(Q) + Θ−1.

• With diagonal matrix D we have a choice between

[

D AT

A 0

]

and AD−1AT .

• It is important to keep Θ−1 in the preconditioner.
Recall that Θ is ill-conditioned:
“basic” j: Θj=xj/sj→∞; “non-basic” j: Θj=xj/sj→0.
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Motivation: Sparsity issues: irreducible blocks in QP.
Consider the matrices

Q =











x x
x x

x
x
x











and A =







x x
x x
x x x
x x






.

H=

























x x x x
x x x x

x x x
x x
x x x

x x
x x
x x x
x x

























→ H(2)=

























x x x x f f
x x f f x x

x x x
x x
x x x

x f x f f f f
x f x f f f f
f x x x f f f f
f x x f f f f

























.
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Spectral Analysis:
Eigenvalues of P−1H satisfy:

Qx +ATy = λDx +λATy
Ax = λAx.

If λ = 1, we are done. If λ 6= 1 the second equation yields Ax = 0.
After multiplying the first equation with xT , we get:

xTQx = λxTDx ⇒ λ =
xTQx

xTDx
= q(D−1Q).

The Rayleigh quotient of the generalized eigenproblem: Dv = µQv.
Since both D and Q are positive definite we have

0 < λmin(D
−1Q) ≤ λ ≤ λmax(D

−1Q).

Conclusion: The preconditioner satisfies the requirements of
Rozlozńık & Simoncini.
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Splitting Preconditioner (only for LPs)

• Consider the Augmented System

[

Θ−1 AT

A 0

]

.

• Keep Θ−1 in the preconditioner.
Recall that Θ is ill-conditioned:

“basic” j: Θj = xj/sj → ∞;
“non-basic” j: Θj = xj/sj → 0.

• Based on the magnitude of Θ−1,

guess “basic/non-basic” partition:

A = [B N ].

• Use the fact that ΘB ≫ ΘN (and Θ−1
B ≪ Θ−1

N ).

• The inverse of the preconditioner only needs B−1.
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LP Case

For “basic” variables, xB → x̂B > 0 and sB → ŝB = 0 hence

Θj = xj/sj ≈ (x2j)/(xjsj) = O(µ−1) ∀j ∈ B.

For “non-basic” variables, xN → x̂N = 0 and sN → ŝN > 0
hence

Θj = xj/sj ≈ (xjsj)/(s
2
j) = O(µ) ∀j ∈ N .

Convert a difficulty into an advantage

→ Exploit the property:

As µ → 0 then:
ΘB → ∞, Θ−1

B → 0;

ΘN → 0, Θ−1
N → ∞.
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Oliveira & Sorensen, LAA 394 (2005) 1-24.

Guess basic/nonbasic partition A = [B|N ] with nonsingular B.

E−1HE−T

=









Θ
1/2
B Θ

−1/2
B B−1

Θ
1/2
N

Θ
1/2
B













−Θ−1
B BT

−Θ−1
N NT

B N 0













Θ
1/2
B Θ

1/2
B

Θ
1/2
N

B−TΘ−1/2
B









=





Im WT

W −In−m
−Im



 , where W = Θ
1/2
N NTB−TΘ

−1/2
B .

With µ → 0 we have Θ−1
B → 0, ΘN → 0 hence

W = Θ
1/2
N NTB−TΘ

−1/2
B ≈ 0.
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Observation:

• The inverse of the preconditioner needs B−1.

• Guessing a stable “basic/non-basic” partition A = [B N ]

is a challenge!

• Use maximum volume concept to identify stable B.

Def: Vol(B) = |det(B)|.
Maximum volume of B implies that entries of B−1N cannot

exceed 1, hence WT = Θ
−1/2
B B−1NΘ

1/2
N is small.

Finding the maximum volume basis in NP-hard.
But finding a (relaxed) ρ-maximum volume basis can be done very
efficiently. Its implementation is a part of an open source IPM code
in HiGHS: https://github.com/ERGO-Code/HiGHS

L. Schork and J. Gondzio, Implementation of an interior point method with basis preconditioning,
Mathematical Programming Computation 12 (2020) pp. 603–635.
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Conclusions:

Direct Methods → sometimes suffer from prohibitive fill-in.

Iterative Methods → strongly depend upon preconditioners.

Challenge:

A development of new preconditioners for IPMs.
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Lecture 3

Example Applications:

Design of Efficient Preconditioners
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Outline

• Homotopy:

“replace a difficult problem with a sequence
of (easy to solve) auxilliary problems”

– Interior Point Methods
– Primal-Dual Newton Conjugate Gradient

• Example Applications and Suitable Preconditioners

– Compressed Sensing
– Compressed Sensing (Coherent and Redundant Dict.)
– X-ray Tomography Material Separation

• Conclusions

Copenhagen, 15 November 2023 3



J. Gondzio L3: Example Preconditioners

Introduction

New applications:

• signal/image processing
(compression, reconstruction, deblurring)

• modern statistics
(inverse problems, classification, machine learning)

Overarching mathematical problem:

• dimension reduction

Optimization faces new challenges:

huge scale of data available
needs new processing algorithms
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Regularized Optimization Problems

Consider a simple (unconstrained) optimization problem

min
x

τψ(x) + φ(x)

where τ is a parameter,
φ is a convex function to be minimized, and
ψ is a (convex) regularization function.

Example regularizations:

• ψ(x) = ‖x‖2 (or ‖x‖
2
2)

promotes “equal spread of mass in vector x”

• ψ(x) = ‖x‖1 (it is a good proxy for ‖x‖0)
promotes “few nonzero entries in vector x”
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Binary Classification

min τ‖x‖1+
m∑

i=1
log(1+e−bix

Tai) min τ‖x‖22+
m∑

i=1
log(1+e−bix

Tai)
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Bayesian Statistics Viewpoint

Estimate x from observations

y = Ax + e,

where y are observations and e is the Gaussian noise.

→ minx ‖y − Ax‖22

If the prior on x is Laplacian (log p(x) = −λ‖x‖1 +K) then

min
x

τ‖x‖1 + ‖Ax− b‖22

Tibshirani,
J. of Royal Statistical Soc B 58 (1996) 267-288.
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ℓ1-regularization

min
x

τ‖x‖1 + φ(x).

Unconstrained optimization ⇒ easy
Serious Issue: nondifferentiability of ‖.‖1

Two possible tricks:

• Splitting x = u− v with u, v ≥ 0
−→ use IPM

replace z ≥ 0 with −µ logz and drive µ to zero.

• Smoothing with pseudo-Huber approximation
−→ use continuation (Newton CG)

replace |xi| with µ(

√

1+
x2i
µ2

−1) and drive µ to zero.

Copenhagen, 15 November 2023 8
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Inexact Primal-Dual IPM:

G., Convergence Analysis of an Inexact Feasible IPM for Convex
QP, SIAM J Opt, 23 (2013) No 3, 1510–1527.

G., Matrix-Free Interior Point Method,
Computational Opt and Appls, 51 (2012) 457–480.

Primal-Dual Newton Conjugate Gradient Method:

Fountoulakis and G., A Second-order Method for Strongly Con-
vex ℓ1-regularization Problems,
Mathematical Programming, 156 (2016) 189–219.

Dassios, Fountoulakis and G., A Preconditioner for a Primal-
Dual Newton Conjugate Gradient Method for Compressed Sensing
Problems, SIAM J on Sci Comput, 37 (2015) A2783–A2812.
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Continuation & Preconditioners

(three examples)

Copenhagen, 15 November 2023 10
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Three examples

• Compressed Sensing
with K. Fountoulakis and P. Zhlobich

min
x

τ‖x‖1 +
1

2
‖Ax− b‖22, A ∈ Rm×n

• Compressed Sensing (Coherent and Redundant Dict.)
with I. Dassios and K. Fountoulakis

min
x

τ‖W ∗x‖1 +
1

2
‖Ax− b‖22, W ∈ Cn×l, A ∈ Rm×n

think of Total Variation

• X-ray Tomography Material Separation
with S. Latva-Äijö, S. Siltanen, M. Lassas, F. Zanetti

min
x≥0

‖h−Ax‖22 + α‖x‖22 + βxTSx,

Copenhagen, 15 November 2023 11
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Example 1: Compressed Sensing

with K. Fountoulakis and P. Zhlobich

Large dense quadratic optimization problem:

min
x

τ‖x‖1 +
1

2
‖Ax− b‖22,

where A ∈ Rm×n is a very special matrix.

Fountoulakis, G., Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Mathematical Programming Computation 6 (2014), pp. 1–31.

Software available at http://www.maths.ed.ac.uk/ERGO/
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Restricted Isometry Property (RIP)

• rows of A are orthogonal to each other (A is built of a subset
of rows of an othonormal matrix U ∈Rn×n)

AAT = Im.

• small subsets of columns of A are nearly-orthogonal to each
other: Restricted Isometry Property (RIP)

‖ĀT Ā−
m

n
Ik‖ ≤ δk ∈ (0, 1).

Candès, Romberg & Tao,
Comm on Pure and Appl Maths 59 (2005) 1207-1233.
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Restricted Isometry Property

Matrix Ā ∈ Rm×k (k ≪ n) is built of a subset of columns
of A ∈ Rm×n.

A = −→ Ā =

ĀT Ā = = ≈
m

n
Ik.

This yields a very well conditioned optimization problem.

Copenhagen, 15 November 2023 14
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Problem Reformulation

min
x

τ‖x‖1 +
1

2
‖Ax− b‖22

Replace x = x+ − x− to be able to use |x| = x+ + x−.

Use |xi| = zi + zi+n to replace ‖x‖1 with ‖x‖1 = 1T2nz.

(Increases problem dimension from n to 2n.)

min
z≥0

cT z +
1

2
zTQz,

where

Q =

[

AT

−AT

]

[A −A ] =

[

ATA −ATA
−ATA ATA

]

∈ R2n×2n

Copenhagen, 15 November 2023 15
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Preconditioner

Approximate

M =

[

ATA −ATA
−ATA ATA

]

+

[

Θ−1
1

Θ−1
2

]

with

P =
m

n

[

In −In
−In In

]

+

[

Θ−1
1

Θ−1
2

]

.

We expect (optimal partition):

• k entries of Θ−1 → 0, k ≪ 2n,

• 2n− k entries of Θ−1 → ∞.

Copenhagen, 15 November 2023 16
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Spectral Properties of P−1M

Theorem

• Exactly n eigenvalues of P−1M are 1.

• The remaining n eigenvalues satisfy

|λ(P−1M)− 1| ≤ δk +
n

mδkL
,

where δk is the RIP-constant, and

L is a threshold of “large” (Θ1 + Θ2)
−1.

Fountoulakis, G., Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Mathematical Programming Computation 6 (2014), pp. 1–31.
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Preconditioning
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−→ good clustering of eigenvalues

mf-IPM compares favourably with NestA on easy probs
(NestA: Becker, Bobin and Candés).
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SPARCO problems
Comparison on 18 out of 26 classes of problems
(all but 6 complex and 2 installation-dependent ones).

Solvers compared:
PDCO, Saunders and Kim, Stanford,
ℓ1 − ℓs, Kim, Koh, Lustig, Boyd, Gorinevsky, Stanford,
FPC-AS-CG, Wen, Yin, Goldfarb, Zhang, Rice,
SPGL1, Van Den Berg, Friedlander, Vancouver, and
mf-IPM, Fountoulakis, G., Zhlobich, Edinburgh.

On 36 runs (noisy and noiseless problems), mf-IPM:

• is the fastest on 11,

• is the second best on 14, and

• overall is very robust.

Copenhagen, 15 November 2023 19
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Linear Algebra Perspective

Convert a difficulty into an advantage

Interestingly the same trick works:

in IPMs and in Newton Conjugate Gradient!

Copenhagen, 15 November 2023 20
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Linear Algebra of IPMs for LP/QP

Newton direction




A 0 0
−Q AT I
S 0 X





[
∆x
∆y
∆s

]

=

[
ξp
ξd
ξµ

]

.

Eliminate ∆s from the second equation and get
[

−Q− Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

,

where Θ = XS−1 is a diagonal scaling matrix.

Eliminate ∆x from the first equation and get

(A(Q + Θ−1)−1AT )∆y = g.
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IPM Linear Algebra: Splitting Preconditioner

For “basic” variables, xB → x̂B > 0 and sB → ŝB = 0 hence

Θj = xj/sj ≈ (x2j)/(xjsj) = O(µ−1) ∀j ∈ B.

For “non-basic” variables, xN→ x̂N = 0 and sN→ ŝN > 0 hence

Θj = xj/sj ≈ (xjsj)/(s
2
j) = O(µ) ∀j ∈ N .

Convert a difficulty into an advantage

→ Exploit the property:

As µ→ 0 then:
ΘB → ∞, Θ−1

B → 0;

ΘN → 0, Θ−1
N → ∞.

Copenhagen, 15 November 2023 22
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Oliveira & Sorensen, LAA 394 (2005) 1-24.

Guess basic/nonbasic partition A= [B|N ], invertible B.

E−1HE−T

=







Θ
1/2
B Θ

−1/2
B B−1

Θ
1/2
N

Θ
1/2
B











−Θ−1
B BT

−Θ−1
N NT

B N 0











Θ
1/2
B Θ

1/2
B

Θ
1/2
N

B−TΘ
−1/2
B







=




Im WT

W −In−m
−Im



 , where W = Θ
1/2
N NTB−TΘ

−1/2
B .

With µ→ 0 we have Θ−1
B → 0, ΘN → 0 hence

W = Θ
1/2
N NTB−TΘ

−1/2
B ≈ 0.
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Property of Sparse Approximations

min
x

f (x) = τ‖x‖1 + ‖Ax− b‖22

Assume a sparse solution exists x̂ = [x̂B | x̂Z ] with x̂Z = 0. Parti-
tion matrix A = [AB |AZ ] accordingly.

Then only a small subset of the Hessian ATA is “relevant”

ATA =

[

ATBAB ATBAZ

ATZAB ATZAZ

]

Copenhagen, 15 November 2023 24
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Splitting x = u − v and IPMs

There is a need to solve equations with ATA + Θ−1 and

• Θ−1
j → 0, for j in the sparse part B (x̂j > 0),

• Θ−1
j → ∞, for j in the zero part Z (x̂j ≈ 0).

Then

ATA + Θ−1 =

[

ATBAB + Θ−1
B ATBAZ

ATZAB ATZAZ + Θ−1
Z

]

≈

[

ATBAB

Θ−1
Z

]

Copenhagen, 15 November 2023 25
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Smoothing with pseudo-Huber approximation

There is a need to solve equations with ATA +∇2ψµ(x) and

• ψµ(xj) ≫ 0 and ∇2ψµ(xj) → 0, for j in part B,

• ψµ(xj) ≈ 0 and ∇2ψµ(xj) → 1
µ, for j in part Z.

Then

ATA +∇2ψµ(x) =

[

ATBAB+∇2ψµ(xB) ATBAZ

ATZAB ATZAZ+∇2ψµ(xZ)

]

≈

[

ATBAB
1
µI

]

Copenhagen, 15 November 2023 26
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Example 2: CS, Coherent & Redundant Dict.
with I. Dassios and K. Fountoulakis.

Large dense quadratic optimization problem:

min
x

τ‖W ∗x‖1 +
1

2
‖Ax− b‖22,

where A ∈ Rm×n and W ∈ Cn×l is a dictionary.

Dassios, Fountoulakis and G.
A Preconditioner for a Primal-Dual Newton Conjugate Gradient
Method for Compressed Sensing Problems,
SIAM J on Sci. Comput. 37 (2015) A2783–A2812.

Software available at http://www.maths.ed.ac.uk/ERGO/
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Compressed Sensing and Continuation

Replace
min
x

f (x) = τ‖W ∗x‖1 +
1

2
‖Ax− b‖22, −→ xτ

with
min
x

fµ(x) = τψµ(W
∗x) +

1

2
‖Ax− b‖22, −→ xτ,µ

Solve approximately a family of problems for a (short) decreasing
sequence of µ’s: µ0 > µ1 > µ2 · · ·

Theorem (Brief description)

There exists a µ̃ such that ∀µ ≤ µ̃ the difference of the two solutions
satisfies

‖xτ,µ − xτ‖2 = O(µ1/2) ∀ τ, µ.
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A better linearization

τ Dx︸︷︷︸

∇ψµ(x)

+ AT (Ax− b) = 0,

where D:=diag(D1,...,Dn) with Di:=(µ2+x2i )
−1

2 ∀i=1,...,n

Set g = Dx. Use the easier form of the equations.

Difficult:

τg + AT (Ax− b) = 0,
g = Dx.

Easy:

τg + AT (Ax− b) = 0,

D−1g = x.

Chan, Golub, Mulet,
SIAM J. on Sci. Comput. 20 (1999) 1964–1977.
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A better linearization
Example: gi = 0.99

bad: gi = Dixi good: D−1
i gi = xi
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W-Restricted Isometry Property (W-RIP)

• rows of A are nearly-orthogonal to each other, i.e., there exists
a small constant δ such that

‖AAT − Im‖ ≤ δ.

• W-Restricted Isometry Property (W-RIP):
there exists a constant δq such that

(1− δq)‖Wz‖22 ≤ ‖AWz‖22 ≤ (1 + δq)‖Wz‖22

for all at most q-sparse z ∈ Cn.

Candès, Eldar & Needell,
Appl and Comp Harmonic Anal 31 (2011) 59-73.
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Preconditioner

Approximate
H = τ∇2ψµ(W

∗x) + ATA

with
P = τ∇2ψµ(W

∗x) + ρIn.

We expect (optimal partition):

• k entries of W ∗x ≫ 0, k ≪ l,

• l − k entries of W ∗x ≈ 0.

The preconditioner approximates well the 2nd derivative of the
pseudo-Huber regularization.
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Spectral Properties of P−1H

Theorem

• The eigenvalues of P−1H satisfy

|λ(P−1H)− 1| ≤
η(δ, δq, ρ)

ρ
,

where δq is the W-RIP constant,

δ is another small constant, and

η(δ, δq, ρ) is some simple function.

Dassios, Fountoulakis and G.
A Preconditioner for a Primal-Dual Newton Conjugate Gradient
Method for Compressed Sensing Problems,
SIAM J on Sci. Comput. 37 (2015) A2783–A2812.
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CS: Coherent and Redundant Dictionaries

−→ good clustering of eigenvalues

pdNCG outperforms TFOCS on several examples
(TFOCS: Becker, Candés and Grant).
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Example 3: Multi-energy X-ray Tomography

with S. Latva-Äijö, S. Siltanen, M. Lassas, F. Zanetti

Inverse problem:
min
x≥0

‖h−Ax‖22 + α‖x‖22 + βxTSx,

where S =

[

0 I
I 0

]

is an inner product regularizer.

S promotes material separation. Indeed, minimizing

[x1, x2]
T
[

0 I
I 0

] [

x1
x2

]

= 2xT1 x2

with both x1 ≥ 0 and x2 ≥ 0 forces at least one of components
(either (x1)j or (x2)j) to be zero.

J. Gondzio, S.-M. Latva-Äijö, S.M Siltanen, M. Lassas, F. Zanetti,
Material-separating regularizer for multi-energy X-ray tomography, Inverse Problems, 38 (2022) 025013.
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Multi-energy X-ray Tomography (cont’d)

This is a QP:
min
x≥0

1

2
xTQx + dTx,

where

Q =

[
c211 + c221 c11c12 + c21c22

c11c12 + c21c22 c212 + c222

]

⊗RTR+

[

ρ η
η ρ

]

⊗ I.

Here c11, c12, c21 and c22 are the attenuation constants.
R describes information about the geometry of the measurements.
It can only be accessed via matrix-vector products performed using
the Radon transform.
Preconditioner:

P =

[
(c211 + c221)νI + ρI (c11c12 + c21c22)νI + ηI

(c11c12 + c21c22)νI + ηI (c212 + c222)νI + ρI

]

+X−1S,

where ν approximates the main diagonal of the blocks in RTR.
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Toeplitz-like structure of ATA

0 100 200 300 400 500
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Fig: Magnitude of the mean element along a specific diagonal of
ATA against the distance from the main diagonal.
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Spectral Properties of P−1Q

Theorem

Let P and Q be defined as before.
The eigenvalues of P−1Q satisfy

ρ− η

ρΛF + ρ + η
≤ λ ≤

σmax(A)ΛF + ρ + η

ρλF + ρ− η
,

where ΛF ≥ λF are the two eigenvalues of matrix

F =

[
c211 + c221 c11c12 + c21c22

c11c12 + c21c22 c212 + c222

]

.

J. Gondzio, S.-M. Latva-Äijö, S.M Siltanen, M. Lassas, F. Zanetti,
Material-separating regularizer for multi-energy X-ray tomography, Inverse Problems, 38 (2022) 025013.
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Multi-Energy X-ray Tomography

min
x≥0

‖h−Ax‖22 + α‖x‖22 + βxTSx,

where S =

[

0 I
I 0

]

is an inner product regularizer which promotes

material separation (note x1 ≥ 0, x2 ≥ 0, keep xT1 x2 small).

CG, tol = 10−6 IPCG, ε = 10−2

Size IPM PCG Time IPM PCG Time
2,048 18 3,810 7.46 19 586 1.44
8,192 20 6,301 35.04 24 1,149 6.29
32,768 23 9,249 140.91 26 1,366 23.02
131,072 26 15,115 817.45 32 1,763 106.36
524,288 29 25,112 5,174.26 49 2,639 639.92

J. Gondzio, S.-M. Latva-Äijö, S.M Siltanen, M. Lassas, F. Zanetti,
Material-separating regularizer for multi-energy X-ray tomography, Inverse Problems, 38 (2022) 025013.
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Conclusions

2nd-order methods for optimization (including IPMs):

• employ inexact Newton method

• rely on preconditioners

• enjoy matrix-free implementation

Computational practice:

Such methods need:

• few iterations

• with O(nz(A)) cost per iteration.

Use IPMs in your research!
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