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Simple Example

minimize
x

F̄1(x1, x3) + F̄2(x1, x2, x4)+

F̄3(x4, x5) + F̄4(x3, x4) + F̄5(x3, x6, x7) + F̄6(x3, x8). (1)

Has sparsity graph (edge between vertexes if components in same
term)



Clique Tree for Sparsity Graph

We now assign one computational agent for each clique, and we
may assign F̄i to an agent if and only if the indexes of its variables
belong to the corresponding clique. Hence we can assign F̄1 + F̄4
to C2, F̄2 to C1, F̄3 to C3, F̄5 to C4 and F̄6 to C5. (Not unique
assignment)



Message Passing or Dynamic Programming over Trees
Start with the leaves and compute for agents 3, 4, and 5

m31(x4) = min
x5

{
F̄3(x4, x5)

}
(2)

m42(x3) = min
x6,x7

{
F̄5(x3, x6, x7)

}
(3)

m52(x3) = min
x8

{
F̄6(x3, x8)

}
(4)

Then add the results from agents 4 and 5 to the functions of
Agent 2 and compute

m21(x1, x4) = min
x3

{
F̄1(x1, x3) + F̄4(x3, x4) +m42(x3) +m52(x3)

}
(5)

Finally add the results from agents 2 and 3 to the functions of
Agent 1 and compute

min
x1,x2,x4

{
F̄2(x1, x2, x4) +m31(x4) +m21(x1, x4)

}



Comments

▶ Not easy in general to compute messages or value functions
mi ,j .

▶ For linearly constrained convex quadratic problems the
messages are convex quadratic functions with equality
constraints.

▶ The dual variables can also be recovered.

▶ In fact results in a multi-frontal factorization technique for the
KKT saddle point problem.

▶ Can be used to compute search directions in most
optimization methods.

▶ All other computations in many optimization methods also
distribute over the clique tree.

▶ In total 6 upward and 6 downward passes through the clique
tree, of which only one pass involves significant computations,
for each iteration in an IP algorithm



Interior-Point Methods

Consider the QP

minimize
z

1

2
zTQz + qT z (6)

subj. to Az = b (7)

Dz ≤ e (8)

where Q ⪰ 0, and A has full row rank.

KKT optimality conditions:
Q AT DT

A
D I

M



z
λ
µ
s

 =


−q
b
e
0

 (9)

and (µ, s) ≥ 0, where M = diag(µ).



Search Directions

Linearize: 
Q AT DT

A
D I

S M



∆z
∆λ
∆µ
∆s

 =


rz
rλ
rµ
rs

 (10)

where S = diag(s), and where r = (rz , rλ, rµ, rs) is residual vector.



Reduced KKT system

Equivalently ∆s = rµ −D∆z , ∆µ = S−1(rs −M∆s) and[
Q+DTS−1MD AT

A

] [
∆z
∆λ

]
=

[
rz −DTS−1(rs −Mrµ)

rλ

]
.

(11)
Unique solution iff

Qs = Q+DTS−1MD (12)

is positive definite on the null-space of A.



Parametric QPs

Consider

minimize
z

1

2
zTMz +mT z (13)

subj. to Cz = d (14)

with C full row rank and M ⪰ 0.

KKT conditions: [
M CT

C

] [
z
λ

]
=

[
−m
d

]
.

with unique solution if and only if M + CTC ≻ 0.



Partitioned Problem

Let

M =

[
Q S
ST R

]
; C =

[
A B

D

]
; d =

[
e
f

]
; m =

[
q
r

]
; z =

[
x
y

]
with A full row rank.

Solve

minimize
x

1

2

[
x
y

]T [
Q S
ST

] [
x
y

]
+ qT x (15)

subj. to Ax + By = e (16)

parametrically with respect to all y .



KKT Conditions for Parametric Problem

[
Q AT

A

] [
x
µ

]
=

[
−q − Sy
e − By

]
.

▶ Solution x will be affine in y

▶ Results in a quadratic message in y .

▶ The 1,1-block of M + CTC is Q + ATA, which by the Schur
complement formula is positive definite, which implies unique
solution



Rank Condition

In case A does not have full row rank, perform a rank-revealing
factorization [

Ā1

0

]
x +

[
B̄1

B̄2

]
y =

[
ē1
ē2

]
and append the constraint B̄2y = ē2 to belong to

Dy = f

▶ Step-lenght computations also distribute over clique tree.

▶ Generalizes to Augmented Lagrangian (AL) methods and
Levenberg Marquardt (LM) method.



Model Predictive Control (MPC)

minimize
x ,u

1

2

N−1∑
k=0

[
xk
uk

]T
Q

[
xk
uk

]
+

1

2
xTN SxN (17)

subj. to xk+1 = Axk + Buk , x0 = x̄ (18)

where Q ⪰ 0 and S ⪰ 0

Let ICk (xk , uk , xk+1) be indicator function for

Ck = {(xk , uk , xk+1) | xk+1 = Axk + Buk}

and ID(x0) indicator function for

D = {x0 | x0 = x̄}



Equivalent Formulation

minimize
x ,u

F̄1(x0, u0, x1) + · · ·+ F̄N(xN−1, uN−1, xN), (19)

where

F̄1(x0, u0, x1) = ID(x0) +
1

2

[
x0
u0

]T
Q

[
x0
u0

]
+ IC0(x0, u0, x1)

F̄k+1(xk , uk , xk+1) =
1

2

[
xk
uk

]T
Q

[
xk
uk

]
+ ICk (xk , uk , xk+1)

F̄N(xN−1, uN−1, xN) =
1

2

[
xN−1

uN−1

]T
Q

[
xN−1

uN−1

]
+ ICN−1

(xN−1, uN−1, xN)

+
1

2
xTN SxN



Sparsity Graph and Clique Tree

x0

u0

x1

u1

x2

u2

x3

1 C1 = {x0, u0, x1}

2 C2 = {x1, u1, x2}

3 C3 = {x2, u2, x3}

Assign F̄k to Ck .

Can just as well take C2 or C3 as root! Possible to do even more
parallelization. (details omitted)



Julia Implementation for Parallel Computations
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Speed-up Factor
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Stochastic MPC

minimize
x ,u

M∑
j=1

ωj

1

2

N−1∑
k=0

[
x jk
ujk

]T
Q

[
x jk
ujk

]
+

1

2
(x jN)

TSx jN

 (20)

subj. to x jk+1 = Aj
kx

j
k + B j

ku
j
k + v jk , x j0 = x̄ (21)

C̄u = 0 (22)

where u = (u1, u2, . . . , uM) with uj = (uj0, u
j
1, . . . , u

j
N−1), and

C̄ =


C1,2 −C1,2

C2,3 −C2,3

. . .
. . .

CM−1,M −CM−1,M


with

Cj ,j+1 =
[
I 0

]
The constraint C̄u = 0 is the non-ancipativity constraint.



Sparsity Graph
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Clique Tree

C0
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Robust MPC can be done similarly for a QCQP.



Distributed MPC

minimize
x ,u

m∑
i=1

(
N∑

k=1

hi (xi (k), ui (k))) + hfi (xi (N + 1)

)
(23)

subj. to xi (k + 1) = fi (xi (k), ui (k)) +
∑

j∈N (i)

gj(xj(k), uj(k))

xi (1) = x̄i , k = 1, . . . ,N, i = 1, . . . ,m (24)



Example

minimize
x ,u

7∑
i=1

(
N∑

k=1

rxxi (k)
2 + ruui (k)

2) + rxxi (N + 1)2 (25)

subj. to x1(k + 1) = α1x1(k)
2 + β1u1(k) + x2(k) + x3(k)

x2(k + 1) = α2x2(k)
2 + β2u2(k) + x4(k) + x5(k)

x3(k + 1) = α3x3(k)
2 + β3u3(k)

x4(k + 1) = α4x4(k)
2 + β4u4(k)

x5(k + 1) = α5x5(k)
2 + β5u5(k) + x6(k) + x7(k)

x6(k + 1) = α6x6(k)
2 + β6u6(k)

x7(k + 1) = α7x7(k)
2 + β7u7(k), k = 1, . . . ,N

xi (1) = x̄i , i = 1, . . . , 7 (26)



Clique Tree
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Convergence

Augmented Lagrangian (AL) method



Convergence ctd.



Average Iterations Versus Time Horizon



Average Communications Versus Time Horizon



Variable Horizon (VH) MPC

minimizeu,ξ,N JN(ξ, u) + cN
subject to ξk+1 = F ξk + Guk for k = 0, . . . ,N − 1

ck ≤ Cξk + Duk ≤ dk for k = 0, . . . ,N − 1
cN ≤ CNξN ≤ dN ,

(27)

where

JN(ξ, u) =
1

2

N−1∑
k=0

[
ξk
uk

]T [
Q1 Q12

QT
12 Q2

] [
ξk
uk

]
+

1

2
ξTNQNξN



Equalivalent Formulation

Inner problem:

minimizeξ,u JN(ξ0, u)
subj. to ξk+1 = F ξk + Guk for k = 0, . . . ,N − 1

ck ≤ Cξk + Duk ≤ dk for k = 0, . . . ,N − 1
cN ≤ CNξN ≤ dN ,

(28)

Denote the solution of this problem by (ξ⋆, u⋆N).

Outer problem:

minimizeN JN(ξ
⋆, u⋆N) + cN (29)



Inner Problem

KKT equation for OSQP:[
P + Iσ AT

A −ρ−1I

] [
x̃k+1

ν̃k+1

]
=

[
σxk − q

zk − ρ−1yk

]
, (30)

▶ Need to solve for many different values of N.

▶ Time for permutation and factorization of matrix comparable
to time for iterative ADMM steps.

▶ Forward recursion over N.



Forward recursion
KKT matrix can be written as

PT
0 KP0 = LDLT

with matrices

L =


L0

Ȳ T
01L0 L1

Ȳ T
11L1

. . .

. . . L2N
Y T
2N,1L2N L2N+1

,

D =


D0

−D1

. . .

D2N

−D2N+1

.
where P0 is a permutation matrix.



Parallel Computations
Let

PT
0 KP0=

 X U
UT Y V

V T Z


and

PTXP = LDLT , STZS = MEMT , (31)

Then

PT
2 PT

1 PT
0 KP0P1P2 =

 L
0 M

UTPL−TD−1 VSM−TE−1 I

D E

Ŷ


×

LT 0 D−1L−1PTU
MT E−1M−1STV T

I


where Ŷ = Y − ŪD−1ŪT − V̄ E−1V̄ T .



Implementation

▶ Outer problem implemented in C++ using heuristic search
rules.

▶ Inner problem implemented directly in OSQP to maximize
efficiency.

▶ Code available on GitHub1.

▶ All matrix data are saved in the Compressed Sparse Column
(CSC) matrix format.

▶ The CSC format allows to cheaply add or remove columns at
the end of the matrix, so updating the A, P, and P0 matrices
is straightforward.

▶ Only the factorization step in the OSQP implementation is
changed.

1https://github.com/laperss/osqp-recursive-ldl

https://github.com/laperss/osqp-recursive-ldl


Comparison of Computational Time for increasing N
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Outdoor Flight Experiments

▶ DJI Matrice 100 drone

▶ NUC 7i7BNB flight computer

▶ Virtual boat simulated on a separate ground laptop.

▶ A vertical and a horizontal controller, running at 10 Hz.

▶ Moderate wind conditions.

▶ Landing is performed while the boat travels.



Horizon and Solve Time
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Summary

▶ Optimization methods over trees based on dynamic
programming or message passing to compute search
directions.

▶ Needs less communication than other distributed algorithms

▶ Model predictive control (MPC)

▶ Parallel MPC

▶ Stochastic MPC

▶ Variable horizon MPC

▶ Distributed localization (not covered)

▶ Distributed robustness analysis (not covered)
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