
Preconditioner Design via the Bregman Divergence

Joint work with Martin S. Andersen

Computational Mathematics for Data Science

Andreas Bock

17th of November 2023

Technical University of Denmark



Problem setup

Find a solution to the following n × n linear system:

Sx = (A+ B)x = b (1)

• A = QQ∗ Hermitian positive definite, x 7→ Q−1x known

• B Hermitian positive semidefinite

Motivating example: variational data assimilation

S = L⊤D−1L

A

+ H⊤R−1H

B

,

A is a forward model term (L is the model), B stems from an observation

operator H. D and R are (ill-conditioned) covariance matrices.

Question: what is the best preconditioner for (1) of the form

P = A+ X , rank(X ) ≤ r < n ?
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Preconditioned iterative methods

Situation

• S cannot be factorised directly but x 7→ Sx is available.

• Solutions to Sx = b are sought via iterative methods e.g. the

preconditioned conjugate gradient (PCG) method.

Preconditioned iterative methods

• Transform Sx = b into:

P−1Sx = P−1b.

• Construction and application of P−1 must be cheap.

• Works well if P ≈ S , generally we seek κ(P−1S) < κ(S).

...but what does ”≈” mean?

Obvious discrepancy measures include ∥P − S∥2, ∥P − S∥F , ...
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Bregman log determinant matrix divergence

A proper and strictly convex function ϕ ∈ C1 defines a Bregman matrix

divergence Dϕ : domϕ× ri domϕ → [0,∞):

Dϕ(X ,Y ) = ϕ(X )− ϕ(Y )− ⟨∇ϕ(Y ), (X − Y )⟩.

ϕ

y x

ϕ(x)

ϕ(y) + ⟨∇ϕ(y), x − y⟩

Dϕ(x ; y)
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Bregman log determinant matrix divergence

A proper and strictly convex function ϕ ∈ C1 defines a Bregman matrix

divergence Dϕ : domϕ× ri domϕ → [0,∞):

Dϕ(X ,Y ) = ϕ(X )− ϕ(Y )− ⟨∇ϕ(Y ), (X − Y )⟩.

ϕ(X ) = 1
2
∥X∥2F → DF (X ,Y ) = 1

2
∥X − Y ∥2F

ϕ(X ) = − log det(X ) → DB(X ,Y ) = trace(XY−1)− log det(XY−1)− n

Properties

• Dϕ(X ,Y ) = 0 ⇔ X = Y ,

• Nonnegativity: Dϕ(X ,Y ) ≥ 0,

• Convexity: X → Dϕ(X ,Y ) is convex.

• In addition, DB is invariant under congruence transformations:

For invertible M we have DB(X ,Y ) = DB(M
∗XM,M∗YM).
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Preconditioners as Bregman projections

Recall S = A+ B, A = QQ∗

Candidates: P = A+ X = Q(I + Q−1XQ−∗)Q∗, where rank(X ) ≤ r < n

We solve:

minimise
W∈Hn

+

DB(P, S) = trace(PS−1)− log det(PS−1)− n

s.t. P = Q(I +W )Q∗ (change of var. from X to W )

rank(W ) ≤ r

Invariance to the rescue:

DB(P,S) = DB(Q(I +W )Q∗,Q(I + Q−1BQ−∗)Q∗)

= DB(I +W , I + Q−1BQ−∗)

Reduced problem:

minimise
W∈Hn

+

DB(I +W , I + Q−1BQ−∗)

s.t. rank(W ) ≤ r .

5



Preconditioners as Bregman projections

Recall S = A+ B, A = QQ∗

Candidates: P = A+ X = Q(I + Q−1XQ−∗)Q∗, where rank(X ) ≤ r < n

We solve:

minimise
W∈Hn

+

DB(P, S) = trace(PS−1)− log det(PS−1)− n

s.t. P = Q(I +W )Q∗ (change of var. from X to W )

rank(W ) ≤ r

Invariance to the rescue:

DB(P,S) = DB(Q(I +W )Q∗,Q(I + Q−1BQ−∗)Q∗)

= DB(I +W , I + Q−1BQ−∗)

Reduced problem:

minimise
W∈Hn

+

DB(I +W , I + Q−1BQ−∗)

s.t. rank(W ) ≤ r .

5



Preconditioners as Bregman projections

Recall S = A+ B, A = QQ∗

Candidates: P = A+ X = Q(I + Q−1XQ−∗)Q∗, where rank(X ) ≤ r < n

We solve:

minimise
W∈Hn

+

DB(P, S) = trace(PS−1)− log det(PS−1)− n

s.t. P = Q(I +W )Q∗ (change of var. from X to W )

rank(W ) ≤ r

Invariance to the rescue:

DB(P,S) = DB(Q(I +W )Q∗,Q(I + Q−1BQ−∗)Q∗)

= DB(I +W , I + Q−1BQ−∗)

Reduced problem:

minimise
W∈Hn

+

DB(I +W , I + Q−1BQ−∗)

s.t. rank(W ) ≤ r .

5



Preconditioners as Bregman projections

Recall S = A+ B, A = QQ∗

Candidates: P = A+ X = Q(I + Q−1XQ−∗)Q∗, where rank(X ) ≤ r < n

We solve:

minimise
W∈Hn

+

DB(P, S) = trace(PS−1)− log det(PS−1)− n

s.t. P = Q(I +W )Q∗ (change of var. from X to W )

rank(W ) ≤ r

Invariance to the rescue:

DB(P, S) = DB(Q(I +W )Q∗,Q(I + Q−1BQ−∗)Q∗)

= DB(I +W , I + Q−1BQ−∗)

Reduced problem:

minimise
W∈Hn

+

DB(I +W , I + Q−1BQ−∗)

s.t. rank(W ) ≤ r .

5



Preconditioners as Bregman projections

Recall S = A+ B, A = QQ∗

Candidates: P = A+ X = Q(I + Q−1XQ−∗)Q∗, where rank(X ) ≤ r < n

We solve:

minimise
W∈Hn

+

DB(P, S) = trace(PS−1)− log det(PS−1)− n

s.t. P = Q(I +W )Q∗ (change of var. from X to W )

rank(W ) ≤ r

Invariance to the rescue:

DB(P, S) = DB(Q(I +W )Q∗,Q(I + Q−1BQ−∗)Q∗)

= DB(I +W , I + Q−1BQ−∗)

Reduced problem:

minimise
W∈Hn

+

DB(I +W , I + Q−1BQ−∗)

s.t. rank(W ) ≤ r .

5



Summary of theoretical results

Theorem

Let Gr be a rank r truncated SVD of G = Q−1BQ−∗.

P⋆ = Q(I + Gr )Q
∗

is a minimiser of DB(P, S) over the set of preconditioners of the form

P = A+ X , rank(X ) ≤ r .

Note, in general, P⋆ ̸= A+ Br (”=” holds when, e.g., A = σ2I )

Theorem

When rank(B) < n, Gr is a minimiser of the problem

minimise
X∈Hn

+

κ2(P
− 1

2 SP− 1
2 )

s.t. P = Q(I + X )Q∗

rank(X ) ≤ r .
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Digression: which parts of G = Q−1BQ−∗ do we amputate?

Hermitian rank r approximations W such that ∥G −W ∥ < ϵ

• Truncated SVD: Gr = UrΣrU
∗
r G = UΣU∗

• Randomised SVD:

GRSVD = ΘΘ⊤GΘΘ⊤

where ΘR = Ω ∈ Rn×r (columns of Ω are Gaussian)

• Nyström: GNys = GΩ(Ω∗GΩ)†(GΩ)∗

Folklore: Gr is ”better” than GNys, which is ”better” than GRSVD...

Theorem
GNys is a minimiser of a range-restricted Bregman divergence:

min
W∈Hn

+

D(Ω∗WΩ,Ω∗GΩ)

s.t. rangeW ⊆ rangeGΩ.
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Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

D(X ,X + δX ) ≈ 1

2
trace(δX X−1δX X−1) =

1

2
gX (δX , δX ),

and M = (Hn
++, g) is a Riemannian manifold.

Theorem

P⋆ = Q(I + Gr )Q
∗ minimises the Riemannian distance to S given by

dM(P,S) = ∥ Log
(
P− 1

2 SP− 1
2
)
∥22

among matrices of the form Q(I + X )Q∗ for some X ∈ Hn
+ with rank(X ) ≤ r .

Many things to explore

Low-rank geodesic shooting algorithms, alternating projection algorithms, dually flat

Riemannian structure, Stiefel manifold optimisation...

8



Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

D(X ,X + δX ) ≈ 1

2
trace(δX X−1δX X−1) =

1

2
gX (δX , δX ),

and M = (Hn
++, g) is a Riemannian manifold.

Theorem

P⋆ = Q(I + Gr )Q
∗ minimises the Riemannian distance to S given by

dM(P,S) = ∥ Log
(
P− 1

2 SP− 1
2
)
∥22

among matrices of the form Q(I + X )Q∗ for some X ∈ Hn
+ with rank(X ) ≤ r .

Many things to explore

Low-rank geodesic shooting algorithms, alternating projection algorithms, dually flat

Riemannian structure, Stiefel manifold optimisation...

8



Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

D(X ,X + δX ) ≈ 1

2
trace(δX X−1δX X−1) =

1

2
gX (δX , δX ),

and M = (Hn
++, g) is a Riemannian manifold.

Theorem

P⋆ = Q(I + Gr )Q
∗ minimises the Riemannian distance to S given by

dM(P,S) = ∥ Log
(
P− 1

2 SP− 1
2
)
∥22

among matrices of the form Q(I + X )Q∗ for some X ∈ Hn
+ with rank(X ) ≤ r .

Many things to explore

Low-rank geodesic shooting algorithms, alternating projection algorithms, dually flat

Riemannian structure, Stiefel manifold optimisation...

8



Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

D(X ,X + δX ) ≈ 1

2
trace(δX X−1δX X−1) =

1

2
gX (δX , δX ),

and M = (Hn
++, g) is a Riemannian manifold.

Theorem

P⋆ = Q(I + Gr )Q
∗ minimises the Riemannian distance to S given by

dM(P,S) = ∥ Log
(
P− 1

2 SP− 1
2
)
∥22

among matrices of the form Q(I + X )Q∗ for some X ∈ Hn
+ with rank(X ) ≤ r .

Many things to explore

Low-rank geodesic shooting algorithms, alternating projection algorithms, dually flat

Riemannian structure, Stiefel manifold optimisation...

8



Application to variational data assimilation

Image retrieved from the European Centre for Medium-Range Weather Forecasts (www.ecmwf.int)

J(x0) =
1

2
(x0 − xB

0 )⊤B−1(x0 − xB
0 )︸ ︷︷ ︸

initial cond.

+
1

2

N∑
i=1

(xi − Mi (xi−1))
⊤Q−1

i (xi − Mi (xi−1))︸ ︷︷ ︸
forward model

+
1

2

N∑
i=0

(yi − Hi (xi ))
⊤R−1

i (yi − Hi (xi ))︸ ︷︷ ︸
match observations
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Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR

At each GN step, we solve for the increment δx by inverting the Hessian of JGN:

S = L⊤D−1L

A

+ H⊤R−1H

B

,

D =


B

Q1

. . .

QN

 , L =


I

−M1 I

. . .

−Mn I

 ,
R = blkdiag (R0, . . . ,RN ),

H = blkdiag (H0, . . . ,HN ).

Example: assimilating the heat equation ∂tu = ∆u

n = 105, s = 1000 (spatial resolution), N = 100 (time steps), ∆t = 10−4 (step size)

rank(B) = n/2 (we only observe half of the state at each time step)

r ∈ {500, 2000, 4000} (about 0.05%, 2% and 4% of n, respectively)

We compare the following preconditioners

P = A, P = A+ Br , and P = Q(I + Gr )Q
⊤.
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Application to variational data assimilation
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Summary

Insights

• The Bregman divergence appears useful for studying preconditioners.

• Importance of invariance cannot be understated.

• Nyström can be derived using the Bregman divergence, where to next?

• Try it: pip install scaled-preconditioners

Generalisations and future work

• What if you don’t know the A+ B structure?

• Allowing indefiniteness of B: coming soon to an arXiv near you!

• Bounded (or other) divergences (numerical stability, more geometric

insights)...

• Big picture: studying the geometry of preconditioners.
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Thank you to everyone for coming to

our workshop! ,
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