Preconditioner Design via the Bregman Divergence

Joint work with Martin S. Andersen
Computational Mathematics for Data Science

Andreas Bock
$17^{\text {th }}$ of November 2023

Technical University of Denmark

Problem setup

Find a solution to the following $n \times n$ linear system:

$$
\begin{equation*}
S x=(A+B) x=b \tag{1}
\end{equation*}
$$

- $A=Q Q^{*}$ Hermitian positive definite, $x \mapsto Q^{-1} x$ known
- B Hermitian positive semidefinite

Problem setup

Find a solution to the following $n \times n$ linear system:

$$
\begin{equation*}
S x=(A+B) x=b \tag{1}
\end{equation*}
$$

- $A=Q Q^{*}$ Hermitian positive definite, $x \mapsto Q^{-1} x$ known
- B Hermitian positive semidefinite

Motivating example: variational data assimilation

$$
S=\underbrace{\mathbf{L}^{\top} \mathbf{D}^{-1} \mathbf{L}}_{A}+\underbrace{\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}}_{B}
$$

A is a forward model term (L is the model), B stems from an observation operator H. D and \mathbf{R} are (ill-conditioned) covariance matrices.

Problem setup

Find a solution to the following $n \times n$ linear system:

$$
\begin{equation*}
S x=(A+B) x=b \tag{1}
\end{equation*}
$$

- $A=Q Q^{*}$ Hermitian positive definite, $x \mapsto Q^{-1} x$ known
- B Hermitian positive semidefinite

Motivating example: variational data assimilation

$$
S=\underbrace{\mathbf{L}^{\top} \mathbf{D}^{-1} \mathbf{L}}_{A}+\underbrace{\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}}_{B}
$$

A is a forward model term (L is the model), B stems from an observation operator H. D and \mathbf{R} are (ill-conditioned) covariance matrices.

Question: what is the best preconditioner for (1) of the form

$$
P=A+X, \quad \operatorname{rank}(X) \leq r<n \quad ?
$$

Preconditioned iterative methods

Situation

- S cannot be factorised directly but $x \mapsto S x$ is available.
- Solutions to $S x=b$ are sought via iterative methods e.g. the preconditioned conjugate gradient (PCG) method.

Preconditioned iterative methods

Situation

- S cannot be factorised directly but $x \mapsto S x$ is available.
- Solutions to $S x=b$ are sought via iterative methods e.g. the preconditioned conjugate gradient (PCG) method.

Preconditioned iterative methods

- Transform $S_{X}=b$ into:

$$
P^{-1} S x=P^{-1} b
$$

- Construction and application of P^{-1} must be cheap.
- Works well if $P \approx S$, generally we seek $\kappa\left(P^{-1} S\right)<\kappa(S)$.

Preconditioned iterative methods

Situation

- S cannot be factorised directly but $x \mapsto S x$ is available.
- Solutions to $S x=b$ are sought via iterative methods e.g. the preconditioned conjugate gradient (PCG) method.

Preconditioned iterative methods

- Transform $S_{x}=b$ into:

$$
P^{-1} S x=P^{-1} b
$$

- Construction and application of P^{-1} must be cheap.
- Works well if $P \approx S$, generally we seek $\kappa\left(P^{-1} S\right)<\kappa(S)$.
...but what does " \approx " mean?
Obvious discrepancy measures include $\|P-S\|_{2},\|P-S\|_{F}, \ldots$

Bregman log determinant matrix divergence

A proper and strictly convex function $\phi \in \mathrm{C}^{1}$ defines a Bregman matrix divergence D_{ϕ} : dom $\phi \times$ ridom $\phi \rightarrow[0, \infty)$:

$$
D_{\phi}(X, Y)=\phi(X)-\phi(Y)-\langle\nabla \phi(Y),(X-Y)\rangle
$$

Bregman log determinant matrix divergence

A proper and strictly convex function $\phi \in \mathrm{C}^{1}$ defines a Bregman matrix divergence D_{ϕ} : dom $\phi \times$ ridom $\phi \rightarrow[0, \infty)$:

$$
D_{\phi}(X, Y)=\phi(X)-\phi(Y)-\langle\nabla \phi(Y),(X-Y)\rangle
$$

Bregman log determinant matrix divergence

A proper and strictly convex function $\phi \in \mathrm{C}^{1}$ defines a Bregman matrix divergence $D_{\phi}: \operatorname{dom} \phi \times$ ridom $\phi \rightarrow[0, \infty)$:

$$
D_{\phi}(X, Y)=\phi(X)-\phi(Y)-\langle\nabla \phi(Y),(X-Y)\rangle
$$

Bregman log determinant matrix divergence

A proper and strictly convex function $\phi \in \mathrm{C}^{1}$ defines a Bregman matrix divergence $D_{\phi}: \operatorname{dom} \phi \times$ ridom $\phi \rightarrow[0, \infty)$:

$$
D_{\phi}(X, Y)=\phi(X)-\phi(Y)-\langle\nabla \phi(Y),(X-Y)\rangle
$$

$$
\begin{array}{lll}
\phi(X)=\frac{1}{2}\|X\|_{F}^{2} & \rightarrow & D_{F}(X, Y)=\frac{1}{2}\|X-Y\|_{F}^{2} \\
\phi(X)=-\log \operatorname{det}(X) & \rightarrow & D_{B}(X, Y)=\operatorname{trace}\left(X Y^{-1}\right)-\log \operatorname{det}\left(X Y^{-1}\right)-n
\end{array}
$$

Bregman log determinant matrix divergence

A proper and strictly convex function $\phi \in \mathrm{C}^{1}$ defines a Bregman matrix divergence D_{ϕ} : dom $\phi \times$ ridom $\phi \rightarrow[0, \infty)$:

$$
D_{\phi}(X, Y)=\phi(X)-\phi(Y)-\langle\nabla \phi(Y),(X-Y)\rangle
$$

$$
\begin{array}{lll}
\phi(X)=\frac{1}{2}\|X\|_{F}^{2} & \rightarrow & D_{F}(X, Y)=\frac{1}{2}\|X-Y\|_{F}^{2} \\
\phi(X)=-\log \operatorname{det}(X) & \rightarrow & D_{B}(X, Y)=\operatorname{trace}\left(X Y^{-1}\right)-\log \operatorname{det}\left(X Y^{-1}\right)-n
\end{array}
$$

Properties

- $D_{\phi}(X, Y)=0 \Leftrightarrow X=Y$,
- Nonnegativity: $D_{\phi}(X, Y) \geq 0$,
- Convexity: $X \rightarrow D_{\phi}(X, Y)$ is convex.
- In addition, D_{B} is invariant under congruence transformations:

For invertible \mathbf{M} we have $D_{B}(X, Y)=D_{B}\left(\mathbf{M}^{*} X \mathbf{M}, \mathbf{M}^{*} Y \mathbf{M}\right)$.

Preconditioners as Bregman projections

Recall $S=A+B, A=Q Q^{*}$

Preconditioners as Bregman projections

Recall $S=A+B, A=Q Q^{*}$

Candidates: $P=A+X=Q\left(I+Q^{-1} X Q^{-*}\right) Q^{*}$, where $\operatorname{rank}(X) \leq r<n$

Preconditioners as Bregman projections

Recall $S=A+B, A=Q Q^{*}$
Candidates: $P=A+X=Q\left(I+Q^{-1} X Q^{-*}\right) Q^{*}$, where $\operatorname{rank}(X) \leq r<n$
We solve:

$$
\begin{aligned}
\operatorname{minimise}_{W \in \mathbb{H}_{+}^{\prime}} & D_{B}(P, S)=\operatorname{trace}\left(P S^{-1}\right)-\log \operatorname{det}\left(P S^{-1}\right)-n \\
\text { s.t. } & P=Q(I+W) Q^{*} \quad(\text { change of var. from } X \text { to } W) \\
& \operatorname{rank}(W) \leq r
\end{aligned}
$$

Preconditioners as Bregman projections

Recall $S=A+B, A=Q Q^{*}$
Candidates: $P=A+X=Q\left(I+Q^{-1} X Q^{-*}\right) Q^{*}$, where $\operatorname{rank}(X) \leq r<n$
We solve:

$$
\begin{aligned}
\operatorname{minimise}_{W \in \mathbb{H}_{+}^{\prime \prime}} & D_{B}(P, S)=\operatorname{trace}\left(P S^{-1}\right)-\log \operatorname{det}\left(P S^{-1}\right)-n \\
\text { s.t. } & P=Q(I+W) Q^{*} \quad(\text { change of var. from } X \text { to } W) \\
& \operatorname{rank}(W) \leq r
\end{aligned}
$$

Invariance to the rescue:

$$
\begin{aligned}
D_{B}(P, S) & =D_{B}\left(Q(I+W) Q^{*}, Q\left(I+Q^{-1} B Q^{-*}\right) Q^{*}\right) \\
& =D_{B}\left(I+W, I+Q^{-1} B Q^{-*}\right)
\end{aligned}
$$

Preconditioners as Bregman projections

Recall $S=A+B, A=Q Q^{*}$
Candidates: $P=A+X=Q\left(I+Q^{-1} X Q^{-*}\right) Q^{*}$, where $\operatorname{rank}(X) \leq r<n$
We solve:

$$
\begin{aligned}
\operatorname{minimise}_{W \in \mathbb{H}_{+}^{\prime \prime}} & D_{B}(P, S)=\operatorname{trace}\left(P S^{-1}\right)-\log \operatorname{det}\left(P S^{-1}\right)-n \\
\text { s.t. } & P=Q(I+W) Q^{*} \quad(\text { change of var. from } X \text { to } W) \\
& \operatorname{rank}(W) \leq r
\end{aligned}
$$

Invariance to the rescue:

$$
\begin{aligned}
D_{B}(P, S) & =D_{B}\left(Q(I+W) Q^{*}, Q\left(I+Q^{-1} B Q^{-*}\right) Q^{*}\right) \\
& =D_{B}\left(I+W, I+Q^{-1} B Q^{-*}\right)
\end{aligned}
$$

Reduced problem:

$$
\begin{aligned}
\underset{W \in \mathbb{H}_{+}^{r}}{\operatorname{minimise}} & D_{B}\left(I+W, I+Q^{-1} B Q^{-*}\right) \\
\text { s.t. } & \operatorname{rank}(W) \leq r .
\end{aligned}
$$

Summary of theoretical results

Summary of theoretical results

Theorem

Let G_{r} be a rank r truncated SVD of $G=Q^{-1} B Q^{-*}$.

$$
P^{\star}=Q\left(I+G_{r}\right) Q^{*}
$$

is a minimiser of $D_{B}(P, S)$ over the set of preconditioners of the form $P=A+X, \operatorname{rank}(X) \leq r$.

Summary of theoretical results

Theorem

Let G_{r} be a rank r truncated SVD of $G=Q^{-1} B Q^{-*}$.

$$
P^{\star}=Q\left(I+G_{r}\right) Q^{*}
$$

is a minimiser of $D_{B}(P, S)$ over the set of preconditioners of the form $P=A+X, \operatorname{rank}(X) \leq r$.

Note, in general, $P^{\star} \neq A+B_{r}\left("="\right.$ holds when, e.g., $\left.A=\sigma^{2} I\right)$

Summary of theoretical results

Theorem

Let G_{r} be a rank r truncated SVD of $G=Q^{-1} B Q^{-*}$.

$$
P^{\star}=Q\left(I+G_{r}\right) Q^{*}
$$

is a minimiser of $D_{B}(P, S)$ over the set of preconditioners of the form $P=A+X, \operatorname{rank}(X) \leq r$.

Note, in general, $P^{\star} \neq A+B_{r}\left("="\right.$ holds when, e.g., $\left.A=\sigma^{2} I\right)$

Theorem

When $\operatorname{rank}(B)<n, G_{r}$ is a minimiser of the problem

$$
\begin{aligned}
\underset{X \in \mathbb{H}_{+}^{n}}{\operatorname{minimise}} & \kappa_{2}\left(P^{-\frac{1}{2}} S P^{-\frac{1}{2}}\right) \\
\text { s.t. } & P=Q(I+X) Q^{*} \\
& \operatorname{rank}(X) \leq r .
\end{aligned}
$$

Digression: which parts of $G=Q^{-1} B Q^{-*}$ do we amputate?

Digression: which parts of $G=Q^{-1} B Q^{-*}$ do we amputate?

Hermitian rank r approximations W such that $\|G-W\|<\epsilon$

Digression: which parts of $G=Q^{-1} B Q^{-*}$ do we amputate?

Hermitian rank r approximations W such that $\|G-W\|<\epsilon$

- Truncated SVD:

$$
G_{r}=U_{r} \Sigma_{r} U_{r}^{*} \quad G=U \Sigma U^{*}
$$

- Randomised SVD:

$$
G_{\mathrm{RSVD}}=\Theta \Theta^{\top} G \Theta \Theta^{\top}
$$

$$
\text { where } \Theta R=\Omega \in \mathbb{R}^{n \times r} \text { (columns of } \Omega \text { are Gaussian) }
$$

- Nyström:

$$
G_{\mathrm{Nys}}=G \Omega\left(\Omega^{*} G \Omega\right)^{\dagger}(G \Omega)^{*}
$$

Digression: which parts of $G=Q^{-1} B Q^{-*}$ do we amputate?

Hermitian rank r approximations W such that $\|G-W\|<\epsilon$

- Truncated SVD:

$$
G_{r}=U_{r} \Sigma_{r} U_{r}^{*} \quad G=U \Sigma U^{*}
$$

- Randomised SVD:

$$
G_{\mathrm{RSVD}}=\Theta \Theta^{\top} G \Theta \Theta^{\top}
$$

$$
\text { where } \Theta R=\Omega \in \mathbb{R}^{n \times r} \text { (columns of } \Omega \text { are Gaussian) }
$$

- Nyström:

$$
G_{\mathrm{Nys}}=G \Omega\left(\Omega^{*} G \Omega\right)^{\dagger}(G \Omega)^{*}
$$

Folklore: G_{r} is "better" than $G_{N y s}$, which is "better" than $G_{\text {RSVD }} \ldots$

Digression: which parts of $G=Q^{-1} B Q^{-*}$ do we amputate?

Hermitian rank r approximations W such that $\|G-W\|<\epsilon$

- Truncated SVD: $\quad G_{r}=U_{r} \Sigma_{r} U_{r}^{*} \quad G=U \Sigma U^{*}$
- Randomised SVD:

$$
G_{R S V D}=\Theta \Theta^{\top} G \Theta \Theta^{\top}
$$

$$
\text { where } \Theta R=\Omega \in \mathbb{R}^{n \times r} \text { (columns of } \Omega \text { are Gaussian) }
$$

- Nyström:

$$
G_{\mathrm{Nys}}=G \Omega\left(\Omega^{*} G \Omega\right)^{\dagger}(G \Omega)^{*}
$$

Folklore: G_{r} is "better" than $G_{\text {Nys }}$, which is "better" than $G_{\text {RSVD }} \ldots$

Theorem

$G_{N y s}$ is a minimiser of a range-restricted Bregman divergence:

$$
\begin{array}{rl}
\min _{W \in \mathbb{H}_{+}^{n}} & D\left(\Omega^{*} W \Omega, \Omega^{*} G \Omega\right) \\
\text { s.t. } & \text { range } W \subseteq \text { range } G \Omega
\end{array}
$$

Geometric insights

Why does the Bregman divergence appear so useful?

Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

$$
D(X, X+\delta X) \approx \frac{1}{2} \operatorname{trace}\left(\delta X X^{-1} \delta X X^{-1}\right)=\frac{1}{2} g_{X}(\delta X, \delta X)
$$

and $\mathcal{M}=\left(\mathbb{H}_{++}^{n}, g\right)$ is a Riemannian manifold.

Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

$$
D(X, X+\delta X) \approx \frac{1}{2} \operatorname{trace}\left(\delta X X^{-1} \delta X X^{-1}\right)=\frac{1}{2} g_{X}(\delta X, \delta X)
$$

and $\mathcal{M}=\left(\mathbb{H}_{++}^{n}, g\right)$ is a Riemannian manifold.

Theorem

$P^{\star}=Q\left(I+G_{r}\right) Q^{*}$ minimises the Riemannian distance to S given by

$$
d_{\mathcal{M}}(P, S)=\left\|\log \left(P^{-\frac{1}{2}} S P^{-\frac{1}{2}}\right)\right\|_{2}^{2}
$$

among matrices of the form $Q(I+X) Q^{*}$ for some $X \in \mathbb{H}_{+}^{n}$ with $\operatorname{rank}(X) \leq r$.

Geometric insights

Why does the Bregman divergence appear so useful?

By a Taylor expansion we have

$$
D(X, X+\delta X) \approx \frac{1}{2} \operatorname{trace}\left(\delta X X^{-1} \delta X X^{-1}\right)=\frac{1}{2} g_{X}(\delta X, \delta X)
$$

and $\mathcal{M}=\left(\mathbb{H}_{++}^{n}, g\right)$ is a Riemannian manifold.

Theorem

$P^{\star}=Q\left(I+G_{r}\right) Q^{*}$ minimises the Riemannian distance to S given by

$$
d_{\mathcal{M}}(P, S)=\left\|\log \left(P^{-\frac{1}{2}} S P^{-\frac{1}{2}}\right)\right\|_{2}^{2}
$$

among matrices of the form $Q(I+X) Q^{*}$ for some $X \in \mathbb{H}_{+}^{n}$ with $\operatorname{rank}(X) \leq r$.

Many things to explore

Low-rank geodesic shooting algorithms, alternating projection algorithms, dually flat Riemannian structure, Stiefel manifold optimisation...

Application to variational data assimilation

[^0]
Application to variational data assimilation

Image retrieved from the European Centre for Medium-Range Weather Forecasts (www.ecmwf.int)

$$
\begin{aligned}
J\left(x_{0}\right) & =\underbrace{\frac{1}{2}\left(x_{0}-x_{0}^{B}\right)^{\top} B^{-1}\left(x_{0}-x_{0}^{B}\right)}_{\text {initial cond. }}+\underbrace{\frac{1}{2} \sum_{i=1}^{N}\left(x_{i}-\mathcal{M}_{i}\left(x_{i-1}\right)\right)^{\top} Q_{i}^{-1}\left(x_{i}-\mathcal{M}_{i}\left(x_{i-1}\right)\right)}_{\text {forward model }} \\
& +\underbrace{\frac{1}{2} \sum_{i=0}^{N}\left(y_{i}-\mathcal{H}_{i}\left(x_{i}\right)\right)^{\top} R_{i}^{-1}\left(y_{i}-\mathcal{H}_{i}\left(x_{i}\right)\right)}_{\text {match observations }}
\end{aligned}
$$

Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR

Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR
At each GN step, we solve for the increment $\delta \mathbf{x}$ by inverting the Hessian of $J_{G N}$:

$$
\begin{gathered}
S=\mathbf{L}^{\top} \mathbf{D}^{-1} \mathbf{L}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}, \\
\mathbf{D}=\left[\begin{array}{llll}
B & Q_{1} & & \\
& & \ddots & \\
& & & Q_{N}
\end{array}\right], \quad \mathbf{L}=\left[\begin{array}{ccc}
I & \\
-M_{1} & I \\
& \ddots & \\
& -M_{n} & I
\end{array}\right], \begin{array}{l}
\mathbf{R}=\operatorname{blkdiag}\left(R_{0}, \ldots, R_{N}\right), \\
\mathbf{H}=\operatorname{blkdiag}\left(H_{0}, \ldots, H_{N}\right)
\end{array}
\end{gathered}
$$

Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR
At each GN step, we solve for the increment $\delta \mathbf{x}$ by inverting the Hessian of $J_{G N}$:

$$
\begin{gathered}
S=\underbrace{\mathbf{L}^{\top} \mathbf{D}^{-1} \mathbf{L}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H},}_{\text {L }} \\
\mathbf{D}=\left[\begin{array}{llll}
B & Q_{1} & & \\
& & \ddots & \\
& & & Q_{N}
\end{array}\right], \quad \mathbf{L}=\left[\begin{array}{ccc}
I & \\
-M_{1} & I & \\
& \ddots & \\
& -M_{n} & I
\end{array}\right], \begin{array}{l}
\mathbf{R}=\operatorname{blkdiag}\left(R_{0}, \ldots, R_{N}\right) \\
\mathbf{H}=\operatorname{blkdiag}\left(H_{0}, \ldots, H_{N}\right)
\end{array}
\end{gathered}
$$

Example: assimilating the heat equation $\partial_{t} u=\Delta u$
$n=10^{5}, \quad s=1000$ (spatial resolution), $N=100$ (time steps), $\Delta t=10^{-4}$ (step size)
$\operatorname{rank}(B)=n / 2 \quad$ (we only observe half of the state at each time step)
$r \in\{500,2000,4000\}$ (about $0.05 \%, 2 \%$ and 4% of n, respectively)

Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR
At each GN step, we solve for the increment $\delta \mathbf{x}$ by inverting the Hessian of $J_{G N}$:

$$
\begin{aligned}
& S=\mathbf{L}^{\top} \mathbf{D}^{-1} \mathbf{L}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}, \\
& A \quad B \\
& \mathbf{D}=\left[\begin{array}{llll}
B & & & \\
& Q_{1} & & \\
& & \ddots & \\
& & & Q_{N}
\end{array}\right], \quad \mathbf{L}=\left[\begin{array}{ccc}
1 & & \\
-M_{1} & 1 & \\
& \ddots & \\
& -M_{n} &
\end{array}\right], \begin{array}{l}
\mathbf{R}=\operatorname{bikdiag}\left(R_{0}, \ldots, R_{N}\right), \\
\mathbf{H}=\operatorname{blkdiag}\left(H_{0}, \ldots, H_{N}\right) .
\end{array}
\end{aligned}
$$

Example: assimilating the heat equation $\partial_{t} u=\Delta u$
$n=10^{5}, \quad s=1000$ (spatial resolution), $N=100$ (time steps), $\Delta t=10^{-4}$ (step size)
$\operatorname{rank}(B)=n / 2 \quad$ (we only observe half of the state at each time step)
$r \in\{500,2000,4000\}$ (about $0.05 \%, 2 \%$ and 4% of n, respectively)
We compare the following preconditioners

$$
P=A, \quad P=A+B_{r}, \quad \text { and } \quad P=Q\left(I+G_{r}\right) Q^{\top}
$$

Application to variational data assimilation

$r \in\{500,2000,4000\}$

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.
- Importance of invariance cannot be understated.

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.
- Importance of invariance cannot be understated.
- Nyström can be derived using the Bregman divergence, where to next?
- Try it: pip install scaled-preconditioners

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.
- Importance of invariance cannot be understated.
- Nyström can be derived using the Bregman divergence, where to next?
- Try it: pip install scaled-preconditioners

Generalisations and future work

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.
- Importance of invariance cannot be understated.
- Nyström can be derived using the Bregman divergence, where to next?
- Try it: pip install scaled-preconditioners

Generalisations and future work

- What if you don't know the $A+B$ structure?

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.
- Importance of invariance cannot be understated.
- Nyström can be derived using the Bregman divergence, where to next?
- Try it: pip install scaled-preconditioners

Generalisations and future work

- What if you don't know the $A+B$ structure?
- Allowing indefiniteness of B : coming soon to an arXiv near you!

Summary

Insights

- The Bregman divergence appears useful for studying preconditioners.
- Importance of invariance cannot be understated.
- Nyström can be derived using the Bregman divergence, where to next?
- Try it: pip install scaled-preconditioners

Generalisations and future work

- What if you don't know the $A+B$ structure?
- Allowing indefiniteness of B : coming soon to an arXiv near you!
- Bounded (or other) divergences (numerical stability, more geometric insights)...
- Big picture: studying the geometry of preconditioners.

References

國 Dhillon，Inderjit S and Joel A Tropp（2008）．＂Matrix nearness problems with Bregman divergences＂．In：SIAM Journal on Matrix Analysis and Applications 29（4），pp．1120－1146．
目 Kulis，Brian，Mátyás A Sustik，and Inderjit S Dhillon（2009）．＂Low－Rank kernel learning with Bregman matrix divergences．＂．In：Journal of Machine Learning Research 10（2）．
國 Amari，Shun－ichi（2016）．Information geometry and its applications． Vol．194．Springer．
－Martinsson，Per－Gunnar and Joel A Tropp（2020）．＂Randomized numerical linear algebra：Foundations and algorithms＂．In：Acta Numerica 29，pp．403－572．
R Tabeart，Jemima M．and John W．Pearson（2021）．＂Saddle point preconditioners for weak－constraint 4D－Var＂．In：arXiv preprint arXiv：2105．06975．
Bock，Andreas and Martin S Andersen（2023）．＂Preconditioner Design via the Bregman Divergence＂．In：arXiv preprint arXiv：2304．12162．

Thank you to everyone for coming to our workshop!
©
novo
nordisk
fonden
møseк

[^0]: Image retrieved from the European Centre for Medium-Range Weather Forecasts (www.ecmwf.int)

